Saltar al contenido principal
LibreTexts Español

4.3E: Ajuste de Modelos Lineales a Datos (Ejercicios)

  • Page ID
    111843
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\dsum}{\displaystyle\sum\limits} \)

    \( \newcommand{\dint}{\displaystyle\int\limits} \)

    \( \newcommand{\dlim}{\displaystyle\lim\limits} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)
    34.

    Dibuje una gráfica de dispersión para los datos del Cuadro 2. Después, determine si los datos parecen estar relacionados linealmente.

    Cuadro 2
    0 -105
    2 -50
    4 1
    6 55
    8 105
    10 160

    35.

    Dibuje una gráfica de dispersión para los datos del Cuadro 3. Si quisiéramos saber cuándo llegaría la población a 15 mil, ¿la respuesta implicaría interpolación o extrapolación?

    Cuadro 3
    Año Población
    1990 5,600
    1995 5,950
    2000 6,300
    2005 6,600
    2010 6,900
    36.

    Se pidió a ocho estudiantes que estimaran su puntaje en un cuestionario de 10 puntos. Sus puntuaciones estimadas y reales se dan en la Tabla 4. Trace los puntos y luego dibuje una línea que se ajuste a los datos.

    Cuadro 4
    Predijo Real
    6 6
    7 7
    7 8
    8 8
    7 9
    9 10
    10 10
    10 9

    37. Dibuje una línea que mejor se ajuste a los datos trazados.

    Gráfico de dispersión de los puntos: (2,78); (4,81); (6,85); (8,90); y (10,99).

    Para los siguientes ejercicios, considere los datos del Cuadro 5, que muestra el porcentaje de desempleados en una ciudad de personas de 25 años o más que son egresados universitarios se da a continuación, por año.

    Cuadro 5
    Año 2000 2002 2005 2007 2010
    Porcentaje de egresados 6.5 7.0 7.4 8.2 9.0
    38.

    Determinar si la tendencia parece ser lineal. Si es así, y suponiendo que la tendencia continúe, encontrar un modelo de regresión lineal para predecir el porcentaje de desempleados en un año determinado a tres decimales.

    39.

    ¿En qué año el porcentaje superará el 12%?

    40.

    Con base en el conjunto de datos que se da en la Tabla 6, calcular la línea de regresión utilizando una calculadora u otra herramienta tecnológica, y determinar el coeficiente de correlación a tres decimales.

    Cuadro 6
    xx 17 20 23 26 29
    yy 15 25 31 37 40
    41

    Con base en el conjunto de datos que se da en la Tabla 7, calcular la línea de regresión utilizando una calculadora u otra herramienta tecnológica, y determinar el coeficiente de correlación a tres decimales.

    Cuadro 7
    xx 10 12 15 18 20
    yy 36 34 30 28 22

    Para los siguientes ejercicios, considere este escenario: La población de una ciudad aumentó de manera constante en un lapso de diez años. Los siguientes pares ordenados muestran la población y el año en el lapso de diez años (población, año) para años específicos registrados:

    \[(3,600,2000) ;(4,000,2001) ;(4,700,2003) ;(6,000,2006)\]

    42. Utilice la regresión lineal para determinar una función\(y,\) donde el año depende de la población, hasta tres decimales de precisión.

    43. Predecir cuándo la población llegará a 12 mil.

    44. ¿Cuál es el coeficiente de correlación para este modelo con tres decimales de precisión?

    45. Según el modelo, ¿cuál es la población en\(2014 ?\)


    This page titled 4.3E: Ajuste de Modelos Lineales a Datos (Ejercicios) is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform.