10.E: Ejercicios para el Capítulo 10
- Page ID
- 115139
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\dsum}{\displaystyle\sum\limits} \)
\( \newcommand{\dint}{\displaystyle\int\limits} \)
\( \newcommand{\dlim}{\displaystyle\lim\limits} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\){{Template.dropdown {ruta:” /álgebra/linear_álgebra "}}}
Ejercicios de cálculo
1. Considerar\(\mathbb{R}^3 \) con dos bases ortonormales: la base canónica\(e = (e_1 , e_2 , e_3 )\) y la base\(f = (f_1 , f_2 , f_3)\), donde
\[ f_1 = \frac{1}{\sqrt{3}}(1,1,1), f_2 = \frac{1}{\sqrt{6}}(1,-2,1), f_3 = \frac{1}{\sqrt{2}}(1,0,-1) \]
Encuentra la matriz,\(S\), del cambio de base de transformación tal que
\[ [v]_f = S[v]_e, ~\rm{for~ all}~ v \in \mathbb{R}^3 ,\]
donde\([v]_b\) denota el vector de columna de\(v\) con respecto a la base\(b\).
2. Dejar\(v \in \mathbb{C}^4\) ser el vector dado por\(v = (1, i, −1, −i)\). Encontrar la matriz (con respecto a la base canónica sobre\(\mathbb{C}^4\)) de la proyección ortogonal de\(P \in \cal{L}(\mathbb{C}^4)\) tal manera que
\[null(P ) = {v}^\perp.\]
3. Dejar\(U\) ser el subespacio de\(\mathbb{R}^3\) que coincide con el plano a través del origen que es perpendicular al vector\(n = (1, 1, 1) \in \mathbb{R}^3.\)
(a) Encontrar una base ortonormal para\(U\).
(b) Encontrar la matriz (con respecto a la base canónica sobre\(\mathbb{R}^3\)) de la proyección ortogonal\(P \in \cal{L}(\mathbb{R}^3\)) sobre\(U\), es decir, tal que\(range(P ) = U\).
4. Dejar\(V = \mathbb{C}^4\) con su producto interno estándar. Para\( \theta \in \mathbb{R}\), vamos
\[ v_\theta = \left( \begin{array}{c} 1 \\ e^{i\theta} \\ e^{2i\theta} \\ e^{3i\theta} \end{array} \right) \in \mathbb{C}^4.\]
Encuentra la matriz canónica de la proyección ortogonal sobre el subespacio\({v_\theta }^\perp\).
Ejercicios de prueba de escritura
1. Dejar\(V\) ser un espacio vectorial finito-dimensional encima\(\mathbb{F}\) con dimensión\(n \in \mathbb{Z}_+ \), y supongamos que eso\(b = (v_1 , v_2 , \ldots , v_n) \) es una base para\(V\). Demostrar que los vectores de coordenadas\([v_1 ]_b, [v_2 ]_b, \ldots, [v_n ]_b\) con respecto a\(b\) formar una base para\(\mathbb{F}^n.\)
2. \(V\)Sea un espacio vectorial finito-dimensional sobre\(\mathbb{F}\), y supongamos que\(T \in \cal{L}(V)\) es un operador lineal que tiene la siguiente propiedad: Dadas dos bases cualesquiera\(b\) y\(c\) para\(V\), la matriz\(M(T, b)\) para\(T\) con respecto a\(b\) es la misma que la matriz \(M(T, c)\)para\(T\) con respecto a\(c\). Demostrar que existe un escalar\(\alpha \in \mathbb{F}\) tal que\(T = \alpha I_V\), donde\(I_V\) denota el mapa de identidad en\(V\).


