Saltar al contenido principal
Library homepage
 
LibreTexts Español

5.4: Revisión de la fórmula del capítulo

  • Page ID
    150977
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    5.1 Propiedades de las funciones de densidad de probabilidad continua

    Función de densidad de probabilidad (pdf)\(f(x)\):

    • Función de distribución acumulativa (cdf):\(P(X \leq x)\)

      5.2 La distribución uniforme

      \(X \sim U (a, b)\)

      La media es\(\mu=\frac{a+b}{2}\)

      La desviación estándar es\(\sigma=\sqrt{\frac{(b-a)^{2}}{12}}\)

      Función de densidad de probabilidad:\(f(x)=\frac{1}{b-a} \text { for } a \leq X \leq b\)

      Área a la izquierda de\(\bf{x}\):\(P(X<x)>

      Área a la derecha de\ (\ bf {x}\):\(P(X>x)=(b-x)\left(\frac{1}{b-a}\right)\)

      Área entre\(\bf{c}\) y\(\bf{d}\):\(P(c<d)>

      • 5.3 La distribución exponencial

        • pdf:\ (f (x) = me^ {(—mx)}\) donde\(x \geq 0\) y\(m > 0\)
        • cdf:\(P(X \leq x) = 1 – e^{(–mx)}\)
        • media\(\mu = \frac{1}{m}\)
        • desviación estándar\(\sigma = \mu\)
        • Adicionalmente
          • \(P(X > x) = e^{(–mx)}\)
          • \(P(a < X < b) = e^{(–ma)} – e^{(–mb)}\)
        • Probabilidad de Poisson:\(P(X=x)=\frac{\mu^{x} e^{-\mu}}{x !}\) con media y varianza de\(\mu\)

    This page titled 5.4: Revisión de la fórmula del capítulo is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.