Saltar al contenido principal

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

$\chi \sim \chi^{2}_{df}$

donde$$df =$$ grados de libertad que depende de cómo se utilice el chi-cuadrado. (Si quieres practicar el cálculo de probabilidades de chi-cuadrado entonces usa$$df = n - 1$$. Los grados de libertad para los tres usos principales se calculan cada uno de manera diferente).

Para la$$\chi^{2}$$ distribución, la media poblacional es$$\mu = df$$ y la desviación estándar poblacional es

$\sigma = \sqrt{2(df)}.$

La variable aleatoria se muestra como$$\chi^{2}$$, pero puede ser cualquier letra mayúscula. La variable aleatoria para una distribución chi-cuadrada con$$k$$ grados de libertad es la suma de variables normales estándar al cuadrado$$k$$ independientes.

$\chi^{2} = (Z_{1})^{2} + ... + (Z_{k})^{2}$

1. La curva es asimétrica y sesgada hacia la derecha.
2. Hay una curva de chi-cuadrado diferente para cada uno$$df$$.
1. El estadístico de prueba para cualquier prueba siempre es mayor o igual a cero.
2. Cuando$$df > 90$$, la curva chi-cuadrada se aproxima a la distribución normal. Para$$\chi \sim \chi^{2}_{1,000}$$ la media,$$\mu = df = 1,000$$ y la desviación estándar,$$\mu = \sqrt{2(1,000)}$$. Por lo tanto$$X \sim N(1,000, 44.7)$$,, aproximadamente.
3. La media,$$\mu$$, se encuentra justo a la derecha del pico.

## Referencias

1. Datos de la revista Parade.
2. “Epidemiología del VIH/SIDA Condado de Santa Clara”. Departamento de Salud Pública del Condado de Santa Clara, mayo de 2011.

## Revisar

La distribución chi-cuadrada es una herramienta útil para la evaluación en una serie de categorías de problemas. Estas categorías de problemas incluyen principalmente (i) si un conjunto de datos se ajusta a una distribución particular, (ii) si las distribuciones de dos poblaciones son iguales, (iii) si dos eventos pueden ser independientes, y (iv) si existe una variabilidad diferente a la esperada dentro de una población.

Un parámetro importante en una distribución de chi-cuadrado son los grados de libertad$$df$$ en un problema dado. La variable aleatoria en la distribución chi-cuadrada es la suma de cuadrados de las variables normales estándar df, que deben ser independientes. Las características clave de la distribución de chi-cuadrado también dependen directamente de los grados de libertad.

La curva de distribución de chi-cuadrado está sesgada hacia la derecha, y su forma depende de los grados de libertad$$df$$. Para$$df > 90$$, la curva se aproxima a la distribución normal. Las estadísticas de prueba basadas en la distribución de chi-cuadrado son siempre mayores o iguales a cero. Tales pruebas de aplicación son casi siempre pruebas de cola derecha.

## Revisión de Fórmula

$\chi^{2} = (Z_{1})^{2} + (Z_{2})^{2} + ... + (Z_{df})^{2}$variable aleatoria de distribución chi-cuadrada

$$\mu_{\chi^{2}} = df$$distribución chi-cuadrada media de la población

$$\sigma_{\chi^{2}} = \sqrt{2(df)}$$Desviación estándar de la población de Chi-cuadrado

Ejercicio$$\PageIndex{1}$$

Si el número de grados de libertad para una distribución de chi-cuadrado es 25, ¿cuál es la media poblacional y la desviación estándar?

Contestar

media$$= 25$$ y desviación estándar$$= 7.0711$$

Ejercicio$$\PageIndex{2}$$

Si$$df > 90$$, la distribución es _____________. Si$$df = 15$$, la distribución es ________________.

Ejercicio$$\PageIndex{3}$$

Contestar

Ejercicio$$\PageIndex{4}$$

¿Dónde se$$\mu$$ ubica en una curva chi-cuadrada?

Ejercicio$$\PageIndex{5}$$

¿Es más probable que el df sea 90, 20, o dos en la gráfica?

Contestar

$$df = 2$$

This page titled 11.2: Datos sobre la distribución de Chi-Cuadrado is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.