Saltar al contenido principal

# 9.3.2: Onda armónica escalar esférica

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$$$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

Estas ondas son soluciones de la siguiente ecO con simetría esférica

$\nabla^{2} u=\frac{n^{2}}{c^{2}} u \notag$

tienen la forma

$u(r, t)=\frac{A}{r} e^{i(k r-\omega t)} \notag$

con $$A$$ constante, $$k=n \frac{\omega}{c}=n \frac{2 \pi}{\lambda}$$ y $$\lambda$$ es la longitud de onda en el vacío. Si la coordenada del punto de emisión es $$\mathbf{r}_{o}$$ se define $$r$$ como $$r=\left\|\mathbf{r}-\mathbf{r}_{o}\right\|$$. Los frentes de onda son esféricos y $$v_{f}=\frac{\omega}{k}=\frac{c}{n}$$.

9.3.2: Onda armónica escalar esférica is shared under a CC BY-SA 1.0 license and was authored, remixed, and/or curated by LibreTexts.