Saltar al contenido principal
LibreTexts Español

1.8: Reflejo Difuso y Transmisión

  • Page ID
    126736
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Se puede usar una capa de dispersión de espesor óptico finito t para modelar, por ejemplo, un anillo planetario. Si usamos el modelo Lommel-Seeliger, entonces el resplandor reflejado de dicha capa puede determinarse cambiando el límite superior de la integral en la ecuación (20) para que

    \[L_{r}=\frac{\varpi_{0} \mathbf{F}}{4 \pi \mu} \times \int_{0}^{t} \exp \left[-\tau\left(\frac{1}{\mu_{0}}+\frac{1}{\mu}\right)\right] d \tau\]

    resultando en

    \[L_{r}=\frac{w_{0}}{4 \pi} \frac{1}{\mu+\mu_{0}} \times \left[1-\exp \left\{-t\left(\frac{1}{\mu_{0}}+\frac{1}{\mu}\right)\right\}\right] \mu_{0} \mathbf{F}\]

    Para el resplandor transmitido, se demuestra fácilmente que

    \[d L_{t}=\frac{\varpi_{0} \mathbf{F} e^{-\tau / \mu_{0}}}{4 \pi \mu} e^{-(t-\tau) / \mu} d \tau\]

    y en el caso especial\(μ = μ_0\), la integración da como resultado

    \[L_{t}=\frac{\varpi_{0} \mathbf{F} t}{4 \pi \mu_{0}} e^{-t / \mu_{0}}\]

    y de otra manera

    \[L_{t}=\frac{\varpi_{0} \mathbf{F}}{4 \pi} \frac{\mu_{0}}{\mu-\mu_{0}}\left[e^{-t / \mu}-e^{-t / \mu_{0}}\right]\]

    En todos los casos los valores de μ y μ 0 son positivos; ¡algunos autores incluso ponen explícitamente símbolos de valor absoluto para resaltar este punto!


    This page titled 1.8: Reflejo Difuso y Transmisión is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy Tatum & Max Fairbairn via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.