Saltar al contenido principal
LibreTexts Español

5.5: Emocionando una Línea

  • Page ID
    86478
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Ahora continuaremos y veremos qué sucede cuando excitamos la línea. Tomemos una fuente de voltaje CC con una fuente de impedancia interna\(R_{s}\) y conectémosla a nuestra línea semi-infinita. El boceto en Figura\(\PageIndex{1}\) es algo torpe y será difícil de analizar, así que hagamos un dibujo más “esquemático” en Figura\(\PageIndex{1}\), teniendo en cuenta que se trata de una situación como la de Figura\(\PageIndex{1}\) que tratamos de representar.

    Una línea de transmisión consta de dos cables, cada uno con una impedancia de Z_0, que se extiende hacia la página. El cable de la derecha se conecta al extremo negativo de una fuente de voltaje v_s, y el extremo positivo de la fuente se conecta a una resistencia R_s y luego al cable de la izquierda en serie.Figura\(\PageIndex{1}\): Emocionando una línea de transmisión

    Dos líneas horizontales están conectadas en sus extremos izquierdos por una fuente de voltaje v_s con el extremo positivo hacia arriba. La línea superior contiene una resistencia R_s. el punto justo a la derecha de la resistencia tiene voltaje V1+ (0, t) con respecto a la línea inferior, y una corriente de I1+ (0, t) fluye hacia la derecha fuera de este punto.Figura\(\PageIndex{2}\): Representación esquemática

    ¿Por qué hemos mostrado un\(I^{+}\) and a \(V^{+}\) but not \(V^{-}\) or \(I^{-}\)? The answer is, that if the line is semi-infinite, then the "other" end is at infinity, and we know there are no sources at infinity. The current flowing through the source resistor is just \(I_{1}^{+}\), so we can do a KVL around the loop: \[V_{s} - I_{1}^{+} (0, t) \ R_{s} - V_{1}^{+} (0, t) = 0\]

    Substituting for \(I_{1}^{+}\) in terms of \(V_{1}^{+}\) using Equation \(5.3.19\) (equation link): \[V_{s} - \frac{V_{1}^{+} (0, t)}{Z_{0}} R_{s} - V_{1}^{+} (0, t) = 0\]

    We re-write this as \[V_{1}^{+} (0, t) \left(1 + \frac{R_{s}}{Z_{0}}\right) = V_{s}\]

    or, on solving for \(V_{1}^{+} (0, t)\), as \[V_{1}^{+} = \frac{Z_{0}}{Z_{0} + R_{s}} V_{s}\]

    This should look both reasonable and familiar to you. The line and the source resistance are acting as a voltage divider. In fact, Equation \(\PageIndex{4}\) is just the usual voltage divider equation for two resistors in series. Thus, the generator can not tell the difference between a semi-infinite transmission line of characteristic impedance \(Z_{0}\) and a resistor with a resistance of the same value: see Figure \(\PageIndex{3}\).

    The positive end of a voltage source v_s is connected in series to a resistor of R_s and then to an impedance of z_0, whose far end connects to the negative end of v_s. There is a voltage drop of V1+ (0, t) across the Z_0 impedance.Figure \(\PageIndex{3}\): Line is initially a voltage divider!

    ¿Alguna vez has oído hablar de "\(300 \mathrm{~ \Omega}\)twin-lead” o tal vez "\(75 \mathrm{~ \Omega}\)co-ax” y te has preguntado por qué la gente querría usar cables con un valor de resistencia tan alto para llevar una señal de TV a su set? Ahora ya lo sabes. La\(300 \mathrm{~ \Omega}\) caracterización no es una medida de la resistencia del cable, sino una especificación de la impedancia de la línea de transmisión. Así, si una señal de TV que viene de tu antena tiene un valor de, digamos\(30 \ \mu \mathrm{V}\),, y se está bajando del techo con\(300 \mathrm{~ \Omega}\) dos conductores, entonces la corriente que fluye en los cables es\(I = \frac{30 \ \mu \mathrm{V}}{300 \mathrm{~ \Omega}} = 100 \mathrm{~nA}\), ¡que es una corriente muy pequeña en verdad!

    ¿Por qué entonces, la gente decidía\(300 \mathrm{~ \Omega}\)? Una antena que tiene solo una longitud de media longitud de onda (lo que resulta ser una opción conveniente y eficiente para señales en el\(100 \mathrm{~MHz}\) rango, con\(\lambda \simeq 3 \mathrm{~m}\)) actúa como una fuente de voltaje con una resistencia de fuente de aproximadamente\(300 \mathrm{~ \Omega}\). Si recuerdas de ELEC 242, cuando tenemos una fuente con una resistencia de fuente\(R_{s}\) y una resistencia de carga con valor de resistencia de carga\(R_{L}\) como en la Figura\(\PageIndex{4}\), calcula la potencia entregada a la carga utilizando el siguiente método.

    El extremo positivo de una fuente de voltaje V_s está conectado en serie a una resistencia R_s y luego a una resistencia R_L, cuyo extremo lejano se conecta al extremo negativo de la fuente. La corriente que sale del extremo positivo de la fuente de voltaje y pasa a través de R_s se etiqueta I_L, y la caída de voltaje a través de R_L se etiqueta V_L.Figura\(\PageIndex{4}\): Transferencia de potencia a una carga

    \(P_{L}\), the power in the load, is just product of the voltage across the load times the current through the load. We can use the voltage divider law to find the voltage across \(R_{L}\) and the resistor sum law to find the current through it. \[\begin{array}{l} P_{L} &= V_{L} I_{L} \\   &= \dfrac{R_{L}}{R_{L} + R_{s}} V_{s} \frac{V_{s}}{R_{L} + R_{s}} \\   &= \dfrac{R_{L}}{\left(R_{L} + R_{s}\right)^{2}} V_{s}{ }^{2} \end{array}\] If we take the derivative of Equation \(\PageIndex{5}\) with respect to \(R_{L}\), the load resistor (which we assume we can pick, given some predetermined \(R_{s}\)), we have (ignoring the \(V_{s}{ }^{2}\), \[\frac{\text{d}}{\text{d} R_{L}} \left(P_{L}\right) = \frac{1}{\left(R_{L} + R_{s}\right)^{2}} \frac{2 R_{L}}{\left(R_{L} + R_{s}\right)^{3}} = 0\]

    Putting everything on \(\left(R_{L} + R_{s}\right)^{3}\) and then just looking at the numerator: \[R_{L} + R_{s} - 2 R_{L} = 0\]

    Which obviously says that for maximum power transfer, you want your load resistor \(R_{L}\) to have the same value as your source resistor \(R_{s}\)! Thus, people came up with the \(300 \mathrm{~\Omega}\) twin lead so that they could maximize the energy transfer between the TV antenna and the transmission line bringing the signal to the TV receiver set. It turns out that for a co-axial transmission line (such as your TV cable), \(75 \mathrm{~\Omega}\) minimizes the signal loss, which is why that value was chosen for CATV.

     

    This page titled 5.5: Emocionando una Línea is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by Bill Wilson.