Saltar al contenido principal
LibreTexts Español

1.14: Teorema de Parseval

  • Page ID
    84433
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    A menudo es conveniente normalizar una bolsa de ondas en el espacio k. Para ello, podemos aplicar el teorema de Parseval.

    Consideremos el corchete de dos funciones, f (x) y g (x) con los pares de transformada de Fourier F (k) y G (k), respectivamente.

    \[ \langle f|g\rangle = \int^{\infty}_{-\infty} f(x)^{*}g(x)dx \nonumber \]

    Ahora, reemplazar las funciones por sus transformadas de Fourier rinde

    \[ \int^{\infty}_{-\infty} f(x)^{*}g(x)dx=\int^{\infty}_{-\infty}[\frac{1}{2\pi}\int^{\infty}_{-\infty}F(k’)e^{-ik’x}dk’]^{*}[\frac{1}{2\pi}\int^{\infty}_{-\infty}G(k)e^{-ikx}dk]dx \nonumber \]

    Reorganizar el orden de integración da

    \[ \int^{\infty}_{-\infty}[\frac{1}{2\pi}\int^{\infty}_{-\infty}F(k’)e^{-ik’x}dk’]^{*}[\frac{1}{2\pi}\int^{\infty}_{-\infty}G(k)e^{-ikx}dk]dx \nonumber \]

    \( =\frac{1}{2\pi}\int^{\infty}_{-\infty}\int^{\infty}_{-\infty}\int^{\infty}_{-\infty}F(k’)*G(k)\frac{1}{2\pi}e^{-i(k-k’)x}dxdk’dk \)

    De la Ecuación (1.9.6) la integración sobre el exponencial complejo produce una función delta

    \[ \frac{1}{2\pi}\int^{\infty}_{-\infty}\int^{\infty}_{-\infty}\int^{\infty}_{-\infty}F(k’)*G(k)\frac{1}{2\pi}e^{-i(k-k’)x}dxdk’dk = \frac{1}{2\pi}\int^{\infty}_{-\infty}\int^{\infty}_{-\infty}F(k’)^{*}G(k)\delta (k-k’)dk’dk \nonumber \]

    Por lo tanto,

    \[ \int^{\infty}_{-\infty}f(x)^{*}g(x)dx=\frac{1}{2\pi}\int^{\infty}_{-\infty}F(k)^{*}G(k)dk \nonumber \]

    De ello se deduce que si una función de onda se normaliza en el espacio real, también se normaliza en el espacio k-, es decir,

    \[ \langle \psi|\psi \rangle = \langle A|A \rangle \nonumber \]

    donde

    \[ \langle A|A \rangle = \frac{1}{2\pi} \int^{\infty}_{-\infty}A(k)^{*}A(k)dk \nonumber \]


    This page titled 1.14: Teorema de Parseval is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Marc Baldo (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.