Saltar al contenido principal

# 9.5: Ejercicios

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

## 9.5.1: Problemas de análisis

1. Para el circuito de la Figura$$\PageIndex{1}$$, determinar el cumplimiento$$P_{load(max)}$$,$$P_{D(max)}$$,$$BV_{CEO}$$ y$$I_{C(max)}$$. $$V_{CC}$$= 15 V,$$V_{EE}$$ = −15 V,$$\beta$$ = 75,$$R_L$$ = 16$$\Omega$$,$$R_1$$ = 680$$\Omega$$,$$R_2$$ = 680$$\Omega$$.

2. Para el circuito de la Figura$$\PageIndex{1}$$, determinar$$Z_{in}$$. $$V_{CC}$$= 15 V,$$V_{EE}$$ = −15 V,$$\beta$$ = 75,$$R_L$$ = 16$$\Omega$$,$$R_1$$ = 680$$\Omega$$,$$R_2$$ = 680$$\Omega$$.

3. Para el circuito de la Figura$$\PageIndex{1}$$, determinar$$Z_{in}$$. $$V_{CC}$$= 25 V,$$V_{EE}$$ = −25 V,$$\beta$$ = 70,$$R_L$$ = 8$$\Omega$$,$$R_1$$ = 560$$\Omega$$,$$R_2$$ = 560$$\Omega$$.

Figura$$\PageIndex{1}$$

4. Para el circuito de la Figura$$\PageIndex{1}$$, determinar el cumplimiento$$P_{load(max)}$$,$$P_{D(max)}$$,$$BV_{CEO}$$ y$$I_{C(max)}$$. $$V_{CC}$$= 25 V,$$V_{EE}$$ = −25 V,$$\beta$$ = 70,$$R_L$$ = 8$$\Omega$$,$$R_1$$ = 560$$\Omega$$,$$R_2$$ = 560$$\Omega$$.

5. Para el circuito de la Figura$$\PageIndex{2}$$, determinar$$P_{load(max)}$$,$$P_{D(max)}$$,$$BV_{CEO}$$ y$$I_{C(max)}$$. $$V_{CC}$$= 15 V,$$\beta$$ = 75,$$R_L$$ = 16$$\Omega$$,$$R_1$$ = 630$$\Omega$$,$$R_2$$ = 630$$\Omega$$.

Figura$$\PageIndex{2}$$

6. Para el circuito de la Figura$$\PageIndex{2}$$, determinar$$Z_{in}$$. $$V_{CC}$$= 15 V,$$\beta$$ = 75,$$R_L$$ = 16$$\Omega$$,$$R_1$$ = 630$$\Omega$$,$$R_2$$ = 630$$\Omega$$.

7. Para el circuito de la Figura$$\PageIndex{2}$$, determinar$$Z_{in}$$. $$V_{CC}$$= 25 V,$$\beta$$ = 70,$$R_L$$ = 8$$\Omega$$,$$R_1$$ = 560$$\Omega$$,$$R_2$$ = 560$$\Omega$$.

8. Para el circuito de la Figura$$\PageIndex{2}$$, determinar$$P_{load(max)}$$,$$P_{D(max)}$$,$$BV_{CEO}$$ y$$I_{C(max)}$$. $$V_{CC}$$= 25 V,$$\beta$$ = 70,$$R_L$$ = 8$$\Omega$$,$$R_1$$ = 510$$\Omega$$,$$R_2$$ = 510$$\Omega$$.

9. Para el circuito de la Figura$$\PageIndex{3}$$, determine$$P_{load(max)}$$,$$P_{D(max)}$$,$$BV_{CEO}$$ y$$I_{C(max)}$$ para los transistores de salida. $$V_{CC}$$= 24 V,$$V_{EE}$$ = −24 V,$$\beta$$ = 75,$$R_L$$ = 8$$\Omega$$,$$R_1$$ = 2.5 k$$\Omega$$,$$R_2$$ = 300$$\Omega$$,$$R_3$$ = 330$$\Omega$$,$$R_4$$ = 63$$\Omega$$.

Figura$$\PageIndex{3}$$

10. Para el circuito de la Figura$$\PageIndex{3}$$, determinar$$A_v$$ y$$Z_{in}$$. $$V_{CC}$$= 24 V,$$V_{EE}$$ = −24 V,$$\beta$$ = 75,$$R_L$$ = 8$$\Omega$$,$$R_1$$ = 2.5 k$$\Omega$$,$$R_2$$ = 300$$\Omega$$,$$R_3$$ = 330$$\Omega$$,$$R_4$$ = 63$$\Omega$$.

Figura$$\PageIndex{4}$$

11. Para el circuito de la Figura$$\PageIndex{4}$$, determine$$P_{load(max)}$$,$$P_{D(max)}$$,$$BV_{CEO}$$ y$$I_{C(max)}$$ para los transistores de salida. $$V_{CC}$$= 24 V,$$V_{EE}$$ = −24 V,$$\beta$$ = 75,$$R_L$$ = 16$$\Omega$$,$$R_1$$ = 600$$\Omega$$,$$R_2$$ = 5 k$$\Omega$$,$$R_3$$ = 63$$\Omega$$,$$R_4$$ = 330$$\Omega$$.

12. Para el circuito de la Figura$$\PageIndex{4}$$, determinar$$A_v$$ y$$Z_{in}$$. $$V_{CC}$$= 24 V,$$V_{EE}$$ = −24 V,$$\beta$$ = 75,$$R_L$$ = 16$$\Omega$$,$$R_1$$ = 600$$\Omega$$,$$R_2$$ = 5 k$$\Omega$$,$$R_3$$ = 63$$\Omega$$,$$R_4$$ = 330$$\Omega$$.

13. Determinar la corriente límite para el circuito de la Figura$$\PageIndex{5}$$ if$$R_E$$ = 0.2$$\Omega$$.

Figura$$\PageIndex{5}$$

14. Determinar$$P_{load(max)}$$, y$$P_{D(max)}$$,$$BV_{CEO}$$ y$$I_{C(max)}$$ para los transistores de salida y controlador de la Figura$$\PageIndex{6}$$. $$V_{CC}$$= 50 V,$$V_{EE}$$ = −50 V,$$\beta$$ = 75,$$R_L$$ = 8$$\Omega$$,$$R_5$$ hasta$$R_8$$ = 0.05$$\Omega$$. Supongamos que todos los demás componentes producen sesgo adecuado.

## 9.5.2: Problemas de diseño

15. Para el circuito de la Figura$$\PageIndex{3}$$, determine los valores para$$R_1$$ y$$R_2$$ para la polarización adecuada. $$V_{CC}$$= 32 V,$$V_{EE}$$ = −32 V,$$\beta$$ = 75,$$R_L$$ = 8$$\Omega$$,$$R_3$$ = 330$$\Omega$$,$$R_4$$ = 63$$\Omega$$.

16. Determine un valor$$R_E$$ para establecer la corriente límite para el circuito de la Figura$$\PageIndex{5}$$ en 2 A.

## 9.5.3: Problemas de desafío

17. Para el circuito de la Figura$$\PageIndex{6}$$, determine los valores para$$R_1$$ y$$R_2$$ para la polarización adecuada. $$V_{CC}$$= 50 V,$$V_{EE}$$ = −50 V,$$\beta$$ = 85,$$R_L$$ = 8$$\Omega$$,$$R_5$$ hasta$$R_8$$ = 0.05$$\Omega$$,$$R_3$$ = 2.2 k$$\Omega$$,$$R_4$$ = 330$$\Omega$$.

18. Para el circuito de la Figura$$\PageIndex{7}$$, determine un valor$$R_5$$ para la polarización adecuada. $$V_{CC}$$= 30 V,$$V_{EE}$$ = −30 V,$$\beta$$ = 100,$$R_L$$ = 16$$\Omega$$,$$R_1$$ = 2.2 k$$\Omega$$,$$R_2$$ = 8.2 k$$\Omega$$,$$R_3$$ = 1.2 k$$\Omega$$,$$R_4$$ = 47$$\Omega$$,$$R_5$$ = 330$$\Omega$$,$$R_6$$ = 470$$\Omega$$,$$R_7$$ = 68 $$\Omega$$.

Figura$$\PageIndex{6}$$

## 9.5.4: Problemas de simulación por computadora

19. Realizar un análisis transitorio en el circuito del Problema 1 para verificar el cumplimiento.

20. Realizar un análisis transitorio en el circuito del Problema 4 para verificar el cumplimiento.

21. Realizar un análisis DC sobre el diseño del Problema 15 para verificar los resultados.

22. Realizar un análisis DC sobre el diseño del Problema 17 para verificar los resultados.

Figura$$\PageIndex{7}$$

This page titled 9.5: Ejercicios is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by James M. Fiore via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.