Saltar al contenido principal

# 12.8: Ejercicios

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$$$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

## 12.8.1: Problemas de análisis

1. Para el circuito de la Figura$$\PageIndex{1}$$, determinar$$I_D$$,$$V_G$$ y$$V_D$$. $$I_{DSS}$$= 20 mA,$$V_{GS(off)}$$ = −6 V,$$V_{DD}$$ = 15 V,$$R_G$$ = 470 k$$\Omega$$,$$R_S$$ = 1.2 k$$\Omega$$,$$R_D$$ = 1.8 k$$\Omega$$.

2. Para el circuito de la Figura$$\PageIndex{1}$$, determinar$$I_D$$,$$V_{DS}$$ y$$V_D$$. $$I_{DSS}$$= 20 mA,$$V_{GS(off)}$$ = −5 V,$$V_{DD}$$ = 30 V,$$R_G$$ = 560 k$$\Omega$$,$$R_S$$ = 420$$\Omega$$,$$R_D$$ = 1.5 k$$\Omega$$.

Figura$$\PageIndex{1}$$

3. Para Figura$$\PageIndex{2}$$, determinar$$I_D$$,$$V_G$$ y$$V_D$$. $$I_{DSS}$$= 15 mA,$$V_{DD}$$ = 25 V,$$V_{GS(off)}$$ = −3 V,$$V_{SS}$$ = −6 V,$$R_G$$ = 820 k$$\Omega$$,$$R_S$$ = 2 k$$\Omega$$,$$R_D$$ = 3.6 k$$\Omega$$.

4. Para el circuito de la Figura$$\PageIndex{2}$$, determinar$$I_D$$,$$V_{DS}$$ y$$V_D$$. $$I_{DSS}$$= 18 mA,$$V_{GS(off)}$$ = −3 V,$$V_{DD}$$ = 30 V,$$V_{SS}$$ = −9 V,$$R_G$$ = 910 k$$\Omega$$,$$R_S$$ = 1.2 k$$\Omega$$,$$R_D$$ = 2.7 k$$\Omega$$.

5. Para el circuito de la Figura$$\PageIndex{3}$$, determinar$$I_D$$,$$V_G$$ y$$V_D$$. $$I_{DSS}$$= 12 mA,$$V_{GS(off)}$$ = −4 V,$$V_{DD}$$ = 35 V,$$R_G$$ = 680 k$$\Omega$$,$$R_D$$ = 1.8 k$$\Omega$$.

Figura$$\PageIndex{2}$$

6. Para el circuito de la Figura$$\PageIndex{3}$$, determinar$$I_D$$,$$V_{DS}$$ y$$V_D$$. $$I_{DSS}$$= 8 mA,$$V_{GS(off)}$$ = −2 V,$$V_{DD}$$ = 30 V,$$R_G$$ = 750 k$$\Omega$$,$$R_D$$ = 2.7 k$$\Omega$$.

Figura$$\PageIndex{3}$$

7. Para el circuito de la Figura$$\PageIndex{4}$$, determinar$$I_D$$,$$V_G$$ y$$V_D$$. $$I_{DSS}$$= 8 mA,$$V_{GS(off)}$$ = −4 V,$$V_{DD}$$ = 30 V,$$R_1$$ = 2.7 M$$\Omega$$,$$R_2$$ = 110 k$$\Omega$$,$$R_D$$ = 470$$\Omega$$.

8. Para el circuito de la Figura$$\PageIndex{4}$$, determinar$$I_D$$,$$V_{DS}$$ y$$V_D$$. $$I_{DSS}$$= 12 mA,$$V_{GS(off)}$$ = −6 V,$$V_{DD}$$ = 20 V,$$R_1$$ = 2 M$$\Omega$$,$$R_2$$ = 100 k$$\Omega$$,$$R_D$$ = 680$$\Omega$$.

9. Para el circuito de la Figura$$\PageIndex{5}$$, determinar$$I_D$$,$$V_G$$ y$$V_D$$. $$I_{D(on)}$$= 8 mA,$$V_{GS(on)}$$ = 5 V,$$V_{GS(th)}$$ = 3 V,$$V_{DD}$$ = 30 V,$$R_1$$ = 2 M$$\Omega$$,$$R_2$$ = 330 k$$\Omega$$,$$R_D$$ = 1.2 k$$\Omega$$.

10. Para el circuito de la Figura$$\PageIndex{5}$$, determinar$$I_D$$,$$V_{DS}$$ y$$V_D$$. $$I_{D(on)}$$= 12 mA,$$V_{GS(on)}$$ = 6 V,$$V_{GS(th)}$$ = 2.5 V,$$V_{DD}$$ = 25 V,$$R_1$$ = 1.5 M$$\Omega$$,$$R_2$$ = 470 k$$\Omega$$,$$R_D$$ = 680$$\Omega$$.

Figura$$\PageIndex{4}$$

Figura$$\PageIndex{5}$$

11. Para el circuito de la Figura$$\PageIndex{6}$$, determinar$$I_D$$,$$V_G$$ y$$V_D$$. $$I_{DSS}$$= 12 mA,$$V_{GS(off)}$$ = 2 V,$$V_{DD}$$ = −25 V,$$R_G$$ = 470 k$$\Omega$$,$$R_S$$ = 800$$\Omega$$,$$R_D$$ = 1.8 k$$\Omega$$.

12. Para el circuito de la Figura$$\PageIndex{6}$$, determinar$$I_D$$ y$$V_D$$. $$I_{DSS}$$= 10 mA,$$V_{GS(off)}$$ = 2 V,$$V_{DD}$$ = −20 V,$$R_G$$ = 560 k$$\Omega$$,$$R_S$$ = 680$$\Omega$$,$$R_D$$ = 1.5 k$$\Omega$$.

Figura$$\PageIndex{6}$$

13. Para el circuito de la Figura$$\PageIndex{7}$$, determinar$$I_D$$,$$V_G$$ y$$V_D$$. $$I_{DSS}$$= 14 mA,$$V_{GS(off)}$$ = 3 V,$$V_{DD}$$ = −25 V,$$V_{SS}$$ = 6 V,$$R_G$$ = 780 k$$\Omega$$,$$R_S$$ = 2 k$$\Omega$$,$$R_D$$ = 3.3 k$$\Omega$$.

Figura$$\PageIndex{7}$$

14. Para el circuito de la Figura$$\PageIndex{7}$$, determinar$$I_D$$ y$$V_D$$. $$I_{DSS}$$= 16 mA,$$V_{GS(off)}$$ = 3.5 V,$$V_{DD}$$ = −20 V,$$V_{SS}$$ = 7 V,$$R_G$$ = 1 M$$\Omega$$,$$R_S$$ = 1.5 k$$\Omega$$,$$R_D$$ = 2.2 k$$\Omega$$.

15. Para el circuito de la Figura$$\PageIndex{8}$$, determinar$$I_D$$ y$$V_D$$. $$I_{DSS}$$= 11 mA,$$V_{GS(off)}$$ = 2 V,$$V_{DD}$$ = −24 V,$$R_G$$ = 750 k$$\Omega$$,$$R_D$$ = 1.2 k$$\Omega$$.

16. Para el circuito de la Figura$$\PageIndex{8}$$, determinar$$I_D$$ y$$V_D$$. $$I_{DSS}$$= 9 mA,$$V_{GS(off)}$$ = 3 V,$$V_{DD}$$ = −18 V,$$R_G$$ = 430 k$$\Omega$$,$$R_D$$ = 910$$\Omega$$.

Figura$$\PageIndex{8}$$

## 12.8.2: Problemas de diseño

17. Usando el circuito de la Figura$$\PageIndex{1}$$, determine un valor$$R_S$$$$I_D$$ para establecer en 4 mA. $$I_{DSS}$$= 10 mA,$$V_{GS(off)}$$ = −2 V,$$V_{DD}$$ = 18 V,$$R_G$$ = 470 k$$\Omega$$,$$R_D$$ = 1.5 k$$\Omega$$.

Figura$$\PageIndex{9}$$

18. Para el circuito de la Figura$$\PageIndex{9}$$, determinar$$R_D$$ y$$R_G$$ establecer$$I_D$$ = 10 mA. $$I_{D(on)}$$= 15 mA,$$V_{GS(on)}$$ = 6 V,$$V_{GS(th)}$$ = 2 V,$$V_{DD}$$ = 20 V.

19. Para el circuito de la Figura$$\PageIndex{9}$$, determinar$$R_D$$ y$$R_G$$ establecer$$I_D$$ = 15 mA. $$I_{D(on)}$$= 10 mA,$$V_{GS(on)}$$ = 5 V,$$V_{GS(th)}$$ = 2 V,$$V_{DD}$$ = 25 V.

## 12.8.3: Problemas de desafío

20. Usando el circuito de la Figura$$\PageIndex{2}$$, se determinan los valores para$$R_D$$,$$R_S$$ y$$V_{SS}$$$$I_D$$ para establecer en 5 mA y$$V_D$$ en 20 V.$$I_{DSS}$$ = 15 mA,$$V_{GS(off)}$$ = −3 V,$$V_{DD}$$ = 30 V,$$R_G$$ = 560 k$$\Omega$$.

21. Usando el circuito de la Figura$$\PageIndex{10}$$, determinar valores$$R_D$$$$V_D$$ para establecer en 15 V.$$I_{DSS}$$ = 10 mA,$$V_{GS(off)}$$ = 3 V,$$V_{SS}$$ = 25 V,$$R_G$$ = 680 k$$\Omega$$.

Figura$$\PageIndex{10}$$

Figura$$\PageIndex{11}$$: Cómic cortesía de xkcd.com

This page titled 12.8: Ejercicios is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by James M. Fiore via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.