Saltar al contenido principal
LibreTexts Español

12.8: Ejercicios

  • Page ID
    83383
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    12.8.1: Problemas de análisis

    1. Para el circuito de la Figura\(\PageIndex{1}\), determinar\(I_D\),\(V_G\) y\(V_D\). \(I_{DSS}\)= 20 mA,\(V_{GS(off)}\) = −6 V,\(V_{DD}\) = 15 V,\(R_G\) = 470 k\(\Omega\),\(R_S\) = 1.2 k\(\Omega\),\(R_D\) = 1.8 k\(\Omega\).

    2. Para el circuito de la Figura\(\PageIndex{1}\), determinar\(I_D\),\(V_{DS}\) y\(V_D\). \(I_{DSS}\)= 20 mA,\(V_{GS(off)}\) = −5 V,\(V_{DD}\) = 30 V,\(R_G\) = 560 k\(\Omega\),\(R_S\) = 420\(\Omega\),\(R_D\) = 1.5 k\(\Omega\).

    clipboard_ef04a1ea6d7148bc7cdd3235ff41c0831.png

    Figura\(\PageIndex{1}\)

    3. Para Figura\(\PageIndex{2}\), determinar\(I_D\),\(V_G\) y\(V_D\). \(I_{DSS}\)= 15 mA,\(V_{DD}\) = 25 V,\(V_{GS(off)}\) = −3 V,\(V_{SS}\) = −6 V,\(R_G\) = 820 k\(\Omega\),\(R_S\) = 2 k\(\Omega\),\(R_D\) = 3.6 k\(\Omega\).

    4. Para el circuito de la Figura\(\PageIndex{2}\), determinar\(I_D\),\(V_{DS}\) y\(V_D\). \(I_{DSS}\)= 18 mA,\(V_{GS(off)}\) = −3 V,\(V_{DD}\) = 30 V,\(V_{SS}\) = −9 V,\(R_G\) = 910 k\(\Omega\),\(R_S\) = 1.2 k\(\Omega\),\(R_D\) = 2.7 k\(\Omega\).

    5. Para el circuito de la Figura\(\PageIndex{3}\), determinar\(I_D\),\(V_G\) y\(V_D\). \(I_{DSS}\)= 12 mA,\(V_{GS(off)}\) = −4 V,\(V_{DD}\) = 35 V,\(R_G\) = 680 k\(\Omega\),\(R_D\) = 1.8 k\(\Omega\).

    clipboard_e7e653f087e688296b5c82a60d69da92a.png

    Figura\(\PageIndex{2}\)

    6. Para el circuito de la Figura\(\PageIndex{3}\), determinar\(I_D\),\(V_{DS}\) y\(V_D\). \(I_{DSS}\)= 8 mA,\(V_{GS(off)}\) = −2 V,\(V_{DD}\) = 30 V,\(R_G\) = 750 k\(\Omega\),\(R_D\) = 2.7 k\(\Omega\).

    clipboard_ef8cdebc69c90b78656fa999070ba5e8a.png

    Figura\(\PageIndex{3}\)

    7. Para el circuito de la Figura\(\PageIndex{4}\), determinar\(I_D\),\(V_G\) y\(V_D\). \(I_{DSS}\)= 8 mA,\(V_{GS(off)}\) = −4 V,\(V_{DD}\) = 30 V,\(R_1\) = 2.7 M\(\Omega\),\(R_2\) = 110 k\(\Omega\),\(R_D\) = 470\(\Omega\).

    8. Para el circuito de la Figura\(\PageIndex{4}\), determinar\(I_D\),\(V_{DS}\) y\(V_D\). \(I_{DSS}\)= 12 mA,\(V_{GS(off)}\) = −6 V,\(V_{DD}\) = 20 V,\(R_1\) = 2 M\(\Omega\),\(R_2\) = 100 k\(\Omega\),\(R_D\) = 680\(\Omega\).

    9. Para el circuito de la Figura\(\PageIndex{5}\), determinar\(I_D\),\(V_G\) y\(V_D\). \(I_{D(on)}\)= 8 mA,\(V_{GS(on)}\) = 5 V,\(V_{GS(th)}\) = 3 V,\(V_{DD}\) = 30 V,\(R_1\) = 2 M\(\Omega\),\(R_2\) = 330 k\(\Omega\),\(R_D\) = 1.2 k\(\Omega\).

    10. Para el circuito de la Figura\(\PageIndex{5}\), determinar\(I_D\),\(V_{DS}\) y\(V_D\). \(I_{D(on)}\)= 12 mA,\(V_{GS(on)}\) = 6 V,\(V_{GS(th)}\) = 2.5 V,\(V_{DD}\) = 25 V,\(R_1\) = 1.5 M\(\Omega\),\(R_2\) = 470 k\(\Omega\),\(R_D\) = 680\(\Omega\).

    clipboard_e1ab231c094c341a90f446eda3d4beee9.png

    Figura\(\PageIndex{4}\)

    clipboard_e00c54618144cf86e17117123807b409c.png

    Figura\(\PageIndex{5}\)

    11. Para el circuito de la Figura\(\PageIndex{6}\), determinar\(I_D\),\(V_G\) y\(V_D\). \(I_{DSS}\)= 12 mA,\(V_{GS(off)}\) = 2 V,\(V_{DD}\) = −25 V,\(R_G\) = 470 k\(\Omega\),\(R_S\) = 800\(\Omega\),\(R_D\) = 1.8 k\(\Omega\).

    12. Para el circuito de la Figura\(\PageIndex{6}\), determinar\(I_D\) y\(V_D\). \(I_{DSS}\)= 10 mA,\(V_{GS(off)}\) = 2 V,\(V_{DD}\) = −20 V,\(R_G\) = 560 k\(\Omega\),\(R_S\) = 680\(\Omega\),\(R_D\) = 1.5 k\(\Omega\).

    clipboard_e404bdc60939556764baee24b8f1c2b99.png

    Figura\(\PageIndex{6}\)

    13. Para el circuito de la Figura\(\PageIndex{7}\), determinar\(I_D\),\(V_G\) y\(V_D\). \(I_{DSS}\)= 14 mA,\(V_{GS(off)}\) = 3 V,\(V_{DD}\) = −25 V,\(V_{SS}\) = 6 V,\(R_G\) = 780 k\(\Omega\),\(R_S\) = 2 k\(\Omega\),\(R_D\) = 3.3 k\(\Omega\).

    clipboard_e0a0a74369dbe30d3847e1ac332205d57.png

    Figura\(\PageIndex{7}\)

    14. Para el circuito de la Figura\(\PageIndex{7}\), determinar\(I_D\) y\(V_D\). \(I_{DSS}\)= 16 mA,\(V_{GS(off)}\) = 3.5 V,\(V_{DD}\) = −20 V,\(V_{SS}\) = 7 V,\(R_G\) = 1 M\(\Omega\),\(R_S\) = 1.5 k\(\Omega\),\(R_D\) = 2.2 k\(\Omega\).

    15. Para el circuito de la Figura\(\PageIndex{8}\), determinar\(I_D\) y\(V_D\). \(I_{DSS}\)= 11 mA,\(V_{GS(off)}\) = 2 V,\(V_{DD}\) = −24 V,\(R_G\) = 750 k\(\Omega\),\(R_D\) = 1.2 k\(\Omega\).

    16. Para el circuito de la Figura\(\PageIndex{8}\), determinar\(I_D\) y\(V_D\). \(I_{DSS}\)= 9 mA,\(V_{GS(off)}\) = 3 V,\(V_{DD}\) = −18 V,\(R_G\) = 430 k\(\Omega\),\(R_D\) = 910\(\Omega\).

    clipboard_e85658a4b1d284fa362faef089e03cf9a.png

    Figura\(\PageIndex{8}\)

    12.8.2: Problemas de diseño

    17. Usando el circuito de la Figura\(\PageIndex{1}\), determine un valor\(R_S\)\(I_D\) para establecer en 4 mA. \(I_{DSS}\)= 10 mA,\(V_{GS(off)}\) = −2 V,\(V_{DD}\) = 18 V,\(R_G\) = 470 k\(\Omega\),\(R_D\) = 1.5 k\(\Omega\).

    clipboard_e67ef9a801713032d3a42068bd0d58e1e.png

    Figura\(\PageIndex{9}\)

    18. Para el circuito de la Figura\(\PageIndex{9}\), determinar\(R_D\) y\(R_G\) establecer\(I_D\) = 10 mA. \(I_{D(on)}\)= 15 mA,\(V_{GS(on)}\) = 6 V,\(V_{GS(th)}\) = 2 V,\(V_{DD}\) = 20 V.

    19. Para el circuito de la Figura\(\PageIndex{9}\), determinar\(R_D\) y\(R_G\) establecer\(I_D\) = 15 mA. \(I_{D(on)}\)= 10 mA,\(V_{GS(on)}\) = 5 V,\(V_{GS(th)}\) = 2 V,\(V_{DD}\) = 25 V.

    12.8.3: Problemas de desafío

    20. Usando el circuito de la Figura\(\PageIndex{2}\), se determinan los valores para\(R_D\),\(R_S\) y\(V_{SS}\)\(I_D\) para establecer en 5 mA y\(V_D\) en 20 V.\(I_{DSS}\) = 15 mA,\(V_{GS(off)}\) = −3 V,\(V_{DD}\) = 30 V,\(R_G\) = 560 k\(\Omega\).

    21. Usando el circuito de la Figura\(\PageIndex{10}\), determinar valores\(R_D\)\(V_D\) para establecer en 15 V.\(I_{DSS}\) = 10 mA,\(V_{GS(off)}\) = 3 V,\(V_{SS}\) = 25 V,\(R_G\) = 680 k\(\Omega\).

    clipboard_e394f26e9772ff9cdd12658ab44c1e99a.png

    Figura\(\PageIndex{10}\)

    clipboard_e94021a17456dcd38ba0d4851829e6cbf.png

    Figura\(\PageIndex{11}\): Cómic cortesía de xkcd.com


    This page titled 12.8: Ejercicios is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by James M. Fiore via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.