Saltar al contenido principal
LibreTexts Español

13.5: Ejercicios

  • Page ID
    83482
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    13.5.1: Problemas de análisis

    1. Para el amplificador de la Figura\(\PageIndex{1}\), determinar\(Z_{in}\) y\(A_v\). \(V_{in}\)= 20 mV,\(I_{DSS}\) = 10 mA,\(V_{GS(off)}\) = −2 V,\(V_{DD}\) = 20 V,\(R_G\) = 750 k\(\Omega\),\(R_D\) = 2 k\(\Omega\),\(R_L\) = 4 k\(\Omega\),\(R_S\) = 1 k\(\Omega\),\(R_{SW}\) = 200\(\Omega\).

    2. Para el amplificador de la Figura\(\PageIndex{1}\), determinar\(Z_{in}\) y\(V_{out}\). \(V_{in}\)= 25 mV,\(I_{DSS}\) = 15 mA,\(V_{GS(off)}\) = −2 V,\(V_{DD}\) = 22 V,\(R_G\) = 330 k\(\Omega\),\(R_D\) = 2 k\(\Omega\),\(R_L\) = 6 k\(\Omega\),\(R_S\) = 510\(\Omega\),\(R_{SW}\) = 220\(\Omega\).

    clipboard_ed0bde85afa4dbd6fd0f99df3724de6b3.png

    Figura\(\PageIndex{1}\)

    3. Para el circuito de la Figura\(\PageIndex{2}\), determinar\(Z_{in}\) y\(A_v\). \(V_{in}\)= 10 mV,\(I_{DSS}\) = 12 mA,\(V_{GS(off)}\) = −2.5 V,\(V_{DD}\) = 26 V,\(R_G\) = 510 k\(\Omega\),\(R_D\) = 1.2 k\(\Omega\),\(R_L\) = 25 k\(\Omega\).

    4. Para el circuito de la Figura\(\PageIndex{2}\), determinar\(Z_{in}\) y\(V_{out}\). \(V_{in}\)= 25 mV,\(I_{DSS}\) = 15 mA,\(V_{GS(off)}\) = −1.5 V,\(V_{DD}\) = 24 V,\(R_G\) = 820 k\(\Omega\),\(R_D\) = 1 k\(\Omega\),\(R_L\) = 12 k\(\Omega\).

    clipboard_e843337dff775a2dcde015501ae874b72.png

    Figura\(\PageIndex{2}\)

    5. Para el circuito de la Figura\(\PageIndex{3}\), determinar\(Z_{in}\) y\(V_{out}\). \(V_{in}\)= 25 mV,\(I_{DSS}\) = 8 mA,\(V_{GS(off)}\) = −3.5 V,\(V_{DD}\) = 24 V,\(R_1\) = 1 M\(\Omega\),\(R_2\) = 100 k\(\Omega\),\(R_D\) = 800\(\Omega\),\(R_L\) = 10 k\(\Omega\).

    6. Para el circuito de la Figura\(\PageIndex{3}\), determinar\(Z_{in}\) y\(A_v\). \(V_{in}\)= 10 mV,\(I_{DSS}\) = 6 mA,\(V_{GS(off)}\) = −4 V,\(V_{DD}\) = 26 V,\(R_1\) = 2 M\(\Omega\),\(R_2\) = 120 k\(\Omega\),\(R_D\) = 1.2 k\(\Omega\),\(R_L\) = 15 k\(\Omega\).

    clipboard_e565998413877d065e47beb9fee744dc3.png

    Figura\(\PageIndex{3}\)

    7. Para el circuito de la Figura\(\PageIndex{4}\), determinar\(Z_{in}\) y\(V_{out}\). \(V_{in}\)= 20 mV,\(I_{D(on)}\) = 6 mA a\(V_{DS(on)}\) = 3 V,\(V_{GS(th)}\) = 2.5 V,\(V_{DD}\) = 34 V,\(R_1\) = 1 M\(\Omega\),\(R_2\) = 100 k\(\Omega\),\(R_D\) = 1 k\(\Omega\),\(R_L\) = 10 k\(\Omega\).

    8. Para el circuito de la Figura\(\PageIndex{4}\), determinar\(Z_{in}\) y\(A_v\). \(V_{in}\)= 15 mV,\(I_{D(on)}\) = 10 mA a\(V_{DS(on)}\) = 4 V,\(V_{GS(th)}\) = 2 V,\(V_{DD}\) = 30 V,\(R_1\) = 2 M\(\Omega\),\(R_2\) = 180 k\(\Omega\),\(R_D\) = 1.2 k\(\Omega\),\(R_L\) = 15 k\(\Omega\).

    clipboard_e4332635bd0017604d6b1dfe2ec92c4e4.png

    Figura\(\PageIndex{4}\)

    9. Para el circuito de la Figura\(\PageIndex{5}\), determinar\(Z_{in}\) y\(V_{out}\). \(V_{in}\)= 200 mV,\(I_{DSS}\) = 15 mA,\(V_{GS(off)}\) = −3 V,\(V_{DD}\) = 15 V,\(R_G\) = 910 k\(\Omega\),\(R_L\) = 10 k\(\Omega\),\(R_S\) = 330\(\Omega\).

    10. Para el circuito de la Figura\(\PageIndex{5}\), determinar\(Z_{in}\) y\(V_{out}\). \(V_{in}\)= 200 mV,\(I_{DSS}\) = 20 mA,\(V_{GS(off)}\) = −2 V,\(V_{DD}\) = 12 V,\(R_G\) = 1 M\(\Omega\),\(R_L\) = 1.8 k\(\Omega\),\(R_S\) = 220\(\Omega\).

    clipboard_e0d31ccef5e05282fadd09381d7306ebb.png

    Figura\(\PageIndex{5}\)

    11. Para el circuito de la Figura\(\PageIndex{6}\), determinar\(Z_{in}\) y\(A_v\). \(I_{DSS}\)= 18 mA,\(V_{GS(off)}\) = −2 V,\(V_{DD}\) = 12 V,\(V_{SS}\) = −4 V,\(R_G\) = 680 k\(\Omega\),\(R_L\) = 10 k\(\Omega\),\(R_S\) = 1 k\(\Omega\).

    12. Para el circuito de la Figura\(\PageIndex{6}\), determinar\(Z_{in}\) y\(A_v\). \(I_{DSS}\)= 20 mA,\(V_{GS(off)}\) = −2 V,\(V_{DD}\) = 10 V,\(V_{SS}\) = −6 V,\(R_G\) = 2.2 M\(\Omega\),\(R_L\) = 5 k\(\Omega\),\(R_S\) = 510\(\Omega\).

    clipboard_e79874ae9c229843fd3b8f123f3b84f9a.png

    Figura\(\PageIndex{6}\)

    13.5.2: Problemas de diseño

    13. Siguiendo el circuito de la Figura\(\PageIndex{1}\), diseñe un amplificador con una ganancia de al menos 5 y una impedancia de entrada de al menos 500 k\(\Omega\). \(R_L\)= 10 k\(\Omega\). El MOSFET tiene los siguientes parámetros:\(V_{GS(off)}\) = −2 V,\(I_{DSS}\) = 25 mA. Intente usar valores de resistencia estándar.

    14. Usando el circuito de la Figura\(\PageIndex{5}\), diseñe un seguidor con una ganancia de al menos .75 y una impedancia de entrada de al menos 1\(\Omega\) M. \(R_L\)= 2 k\(\Omega\). El MOSFET tiene los siguientes parámetros:\(V_{GS(off)}\) = −1.5 V,\(I_{DSS}\) = 40 mA. Intente usar valores de resistencia estándar.

    13.5.3: Problemas de desafío

    15. Para el circuito de la Figura\(\PageIndex{7}\), determinar\(Z_{in}\) y\(A_v\). \(I_{DSS}\)= 15 mA,\(V_{GS(off)}\) = −2 V.

    clipboard_e5a1b50e89a4e914132cadad704e8a7fa.png

    Figura\(\PageIndex{7}\)

    16. Para el circuito de la Figura\(\PageIndex{8}\), determinar\(Z_{in}\) y\(A_v\). \(I_{DSS}\)= 12 mA,\(V_{GS(off)}\) = −1.5 V.

    clipboard_efd376cc47b42fe9789cbecad01353818.png

    Figura\(\PageIndex{8}\)

    13.5.4: Problemas de simulación por computadora

    17. Utili\(Z_{in}\) g hojas de datos del fabricante, encontrar dispositivos con las siguientes especificaciones (típicas) y verificarlos utilizando las técnicas de medición presentadas en el capítulo anterior.

    Dispositivo 1:\(V_{GS(off)}\) = −2 V,\(I_{DSS}\) = 25 mA.

    Dispositivo 2:\(V_{GS(off)}\) = −1.5 V,\(I_{DSS}\) = 40 mA.

    18. Usando el modelo de dispositivo del problema anterior, verifique el diseño del Problema 13.

    19. Usando el modelo de dispositivo del Problema 17, verifique el diseño del Problema 14.


    This page titled 13.5: Ejercicios is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by James M. Fiore via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.