Saltar al contenido principal

# 2.7: Experimento Numérico (Aproximación a e^jθ)

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$$$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

Hemos demostrado que la función$$e^{jθ}$$ tiene dos representaciones:

1. $$e^{jθ}=\lim_{n→∞}(1+\frac {jθ} n)^n$$; y
2. $$e^{jθ}=\lim_{n→∞}∑_{k=0}^n\frac {(jθ)^k} {k!}$$

En este experimento, escribirá un programa MATLAB para evaluar las dos funciones$$f_n$$ y$$S_n$$ para veinte valores de n:

1. $$f_n=(1+\frac {jθ} n)^n,\;n=1,2,...,20$$; y
2. $$S_n=∑^n_{k=0}\frac {(jθ)^k} {k!},\;n=1,2,...,20k$$

Escoge$$θ=π/4(=\mathrm{pi}/4)$$. Utilice un bucle for implícito para dibujar y trazar un círculo de radio 1. Luego use un bucle for implícito para calcular y trazar$$f_n$$ y un bucle for explícito para calcular y trazar$$S_n$$ para n=1,2,... ,100. Se deben observar parcelas como las ilustradas en la Figura. Interpretarlos.

This page titled 2.7: Experimento Numérico (Aproximación a e^jθ) is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Louis Scharf (OpenStax CNX) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.