Saltar al contenido principal
LibreTexts Español

6.5: Promedios exponenciales y filtros recursivos

  • Page ID
    82421
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Supongamos que intentamos extender nuestro método para calcular promedios móviles finitos a promedios móviles infinitos de la forma

    \ [\ begin {align}
    x_ {n} &=\ qquad\ qquad\ qquad\ suma_ {k=0} ^ {\ infty} w_ {k} u_ {n-k}\ nonumber\\
    &=w_ {0} u_ {n} +w_ {1} u_ {n-1} +\ cdots+w_ {1000} u_ {n-1000} +\ cdots
    \ end {align}\ nonumber\]

    En general, esta media móvil requeriría memoria infinita para los coeficientes de ponderación\(w_{0}, w_{1}, \ldots\) y para las entradas\(u_{n}, u_{n-1}, \ldots\). Además, el hardware para multiplicar wkun−kwkun-k tendría que ser infinitamente rápido para calcular la media móvil infinita en tiempo finito. Todo esto es claramente fantasioso e inverosímil (sin mencionar imposible). Pero, ¿y si los pesos toman la forma exponencial

    \[w_{k}= \begin{cases}0, & k<0 \\ w_{0} a^{k}, & k \geq 0 ?\end{cases} \nonumber \]

    ¿Algún resultado de simplificación? Hay esperanza porque la secuencia de ponderación obedece a la recursión

    \[w_{k}= \begin{cases}0, & k<0 \\ w_{0}, & k=0 \\ a w_{k-1} & k \geq 1\end{cases} \nonumber \]

    Esta recursión puede ser reescrita de la siguiente manera, para\(k \geq 1\):

    \[w_{k}-a w_{k-1}=0, k \geq 1 \nonumber \]

    Ahora manipulemos la media móvil infinita y utilicemos la recursión para los pesos para ver qué sucede. Debes seguir cada paso:

    \ [\ begin {align}
    x_ {n} &=\ suma_ {k=0} ^ {\ infty} w_ {k} u_ {n-k}\ nonumber\\
    &=\ quad\ suma_ {k=1} ^ {\ infty} w_ {k} u_ {n-k} +w_ {0} u_ {n}\ nonúmero\\
    &= _ {k=1} ^ {\ infty} a w_ {k-1} u_ {n-k} +w_ {0} u_ {n}\ nonumber\\
    &=a\ suma_ {m=0} ^ {\ infty} w_ {m} u_ {n-1- m} +w_ {0} u_ {n}\ nonumber\\
    &=a x_ {n-1} +w_ {0} u_ {n}.
    \ end {align}\ nonumber\]

    Este resultado es fundamentalmente importante porque dice que la salida de la media móvil exponencial infinita puede calcularse escalando la salida anterior\(x_{n-1}\) por la constante\(a\), escalando la nueva entrada\(u_n\) por\(w_0\), y sumando. Solo se deben asignar tres ubicaciones de memoria: una para\(w_0\), una para\(a\) y otra para\(x_{n-1}\). Sólo se deben implementar dos multiplicaciones: una para\(ax_{n-1}\) y otra para\(w_0u_n\). En la Figura 1 se da un diagrama de la recursión. En esta recursión, el antiguo valor de la media móvil exponencial\(x_{n-1}\),, se escala\(a\) y se suma\(w_0u_n\) para producir la nueva media móvil exponencial\(x_n\). Este nuevo valor se almacena en la memoria, donde se convierte\(x_{n-1}\) en el siguiente paso de la recursión, y así sucesivamente.

    Screen Shot 2021-08-25 a las 9.42.13 PM.png
    Figura\(\PageIndex{1}\): Implementación recursiva de una media móvil exponencial

    Ejercicio\(\PageIndex{1}\)

    Intentar extender la recursión de los párrafos anteriores al promedio ponderado

    \(x_{n}=\sum_{k=0}^{N-1} a^{k} u_{n-k} .\)

    ¿Qué sale mal?

    Ejercicio\(\PageIndex{2}\)

    Calcular la salida de la media móvil exponencial\(x_{n}=a x_{n-1}+w_{0} u_{n}\) cuando la entrada es

    \(u_{n}= \begin{cases}0, & n<0 \\ u, & n \geq 0\end{cases}\)

    Traza tu resultado versus\(n\).

    Ejercicio\(\PageIndex{3}\)

    Calcular\(w_0\) en la secuencia de ponderación exponencial

    \(w_{n}= \begin{cases}0, & n<0 \\ a^{n} w_{0}, & n \geq 0\end{cases}\)

    para que la secuencia de ponderación sea una ventana válida. (Este es un caso especial del Ejercicio 3 de Filtrado: Promedios Móviles.) Asumir\(−1<a<1\)


    This page titled 6.5: Promedios exponenciales y filtros recursivos is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Louis Scharf (OpenStax CNX) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.