Saltar al contenido principal

# 7.3E: Ejercicios

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$

## La práctica hace a la perfección

Sumar y restar expresiones racionales con un denominador común

En los siguientes ejercicios, agregue.

1. $$\dfrac{2}{15}+\dfrac{7}{15}$$

Contestar

$$\dfrac{3}{5}$$

2. $$\dfrac{7}{24}+\dfrac{11}{24}$$

3. $$\dfrac{3c}{4c−5}+\dfrac{5}{4c−5}$$

Contestar

$$\dfrac{3c+5}{4c−5}$$

4. $$\dfrac{7m}{2m+n}+\dfrac{4}{2m+n}$$

5. $$\dfrac{2r^2}{2r−1}+\dfrac{15r−8}{2r−1}$$

Contestar

$$r+8$$

6. $$\dfrac{3s^2}{3s−2}+\dfrac{13s−10}{3s−2}$$

7. $$\dfrac{2w^2}{w^2−16}+\dfrac{8w}{w^2−16}$$

Contestar

$$\dfrac{2w}{w−4}$$

8. $$\dfrac{7x^2}{x^2−9}+\dfrac{21x}{x^2−9}$$

En los siguientes ejercicios, resta.

9. $$\dfrac{9a^2}{3a−7}−\dfrac{49}{3a−7}$$

Contestar

$$3a+7$$

10. $$\dfrac{25b^2}{5b−6}−\dfrac{36}{5b−6}$$

11. $$\dfrac{3m^2}{6m−30}−\dfrac{21m−30}{6m−30}$$

Contestar

$$\dfrac{m−2}{2}$$

12. $$\dfrac{2n^2}{4n−32}−\dfrac{18n−16}{4n−32}$$

13. $$\dfrac{6p^2+3p+4}{p^2+4p−5}−\dfrac{5p^2+p+7}{p^2+4p−5}$$

Contestar

$$\dfrac{p+3}{p+5}$$

14. $$\dfrac{5q^2+3q−9}{q^2+6q+8}−\dfrac{4q^2+9q+7}{q^2+6q+8}$$

15. $$\dfrac{5r^2+7r−33}{r^2−49}−\dfrac{4r^2+5r+30}{r^2−49}$$

Contestar

$$\dfrac{r+9}{r+7}$$

16. $$\dfrac{7t^2−t−4}{t^2−25}−\dfrac{6t^2+12t−44}{t^2−25}$$

Sumar y restar expresiones racionales cuyos denominadores son opuestos

En los siguientes ejercicios, suma o resta.

17. $$\dfrac{10v}{2v−1}+\dfrac{2v+4}{1−2v}$$

Contestar

$$4$$

18. $$\dfrac{20w}{5w−2}+\dfrac{5w+6}{2−5w}$$

19. $$\dfrac{10x^2+16x−7}{8x−3}+\dfrac{2x^2+3x−1}{3−8x}$$

Contestar

$$x+2$$

20. $$\dfrac{6y^2+2y−11}{3y−7}+\dfrac{3y^2−3y+17}{7−3y}$$

21. $$\dfrac{z^2+6z}{z^2−25}−\dfrac{3z+20}{25−z^2}$$

Contestar

$$\dfrac{z+4}{z−5}$$

22. $$\dfrac{a^2+3a}{a^2−9}−\dfrac{3a−27}{9−a^2}$$

23. $$\dfrac{2b^2+30b−13}{b^2−49}−\dfrac{2b^2−5b−8}{49−b^2}$$

Contestar

$$\dfrac{4b−3}{b−7}$$

24. $$\dfrac{c^2+5c−10}{c^2−16}−\dfrac{c^2−8c−10}{16−c^2}$$

Encuentre el denominador menos común de las expresiones racionales

En los siguientes ejercicios, a. encontrar la LCD para las expresiones racionales dadas b. reescribirlas como expresiones racionales equivalentes con el mínimo común denominador.

25. $$\dfrac{5}{x^2−2x−8},\dfrac{2x}{x^2−x−12}$$

Contestar

a. $$(x+2)(x−4)(x+3)$$
b. $$\dfrac{5x+15}{(x+2)(x−4)(x+3)}$$,
$$\dfrac{2x^2+4x}{(x+2)(x−4)(x+3)}$$

26. $$\dfrac{8}{y^2+12y+35},\dfrac{3y}{y^2+y−42}$$

27. $$\dfrac{9}{z^2+2z−8},\dfrac{4z}{z^2−4}$$

Contestar

a. $$(z−2)(z+4)(z−4)$$
b. $$\dfrac{9z−36}{(z−2)(z+4)(z−4)}$$,
$$\dfrac{4z^2−8z}{(z−2)(z+4)(z−4)}$$

28. $$\dfrac{6}{a^2+14a+45},\dfrac{5a}{a^2−81}$$

29. $$\dfrac{4}{b^2+6b+9},\dfrac{2b}{b^2−2b−15}$$

Contestar

a. $$(b+3)(b+3)(b−5)$$
b. $$\dfrac{4b−20}{(b+3)(b+3)(b−5)}$$,
$$\dfrac{2b^2+6b}{(b+3)(b+3)(b−5)}$$

30. $$\dfrac{5}{c^2−4c+4},\dfrac{3c}{c^2−7c+10}$$

31. $$\dfrac{2}{3d^2+14d−5},\dfrac{5d}{3d^2−19d+6}$$

Contestar

a. $$(d+5)(3d−1)(d−6)$$
b. $$\dfrac{2d−12}{(d+5)(3d−1)(d−6)}$$,
$$\dfrac{5d^2+25d}{(d+5)(3d−1)(d−6)}$$

32. $$\dfrac{3}{5m^2−3m−2},\dfrac{6m}{5m^2+17m+6}$$

Sumar y restar expresiones racionales con denominadores diferentes

En los siguientes ejercicios, realice las operaciones indicadas.

33. $$\dfrac{7}{10x^2y}+\dfrac{4}{15xy^2}$$

Contestar

$$\dfrac{21y+8x}{30x^2y^2}$$

34. $$\dfrac{1}{12a^3b^2}+\dfrac{5}{9a^2b^3}$$

35. $$\dfrac{3}{r+4}+\dfrac{2}{r−5}$$

Contestar

$$\dfrac{5r−7}{(r+4)(r−5)}$$

36. $$\dfrac{4}{s−7}+\dfrac{5}{s+3}$$

37. $$\dfrac{5}{3w−2}+\dfrac{2}{w+1}$$

Contestar

$$\dfrac{11w+1}{(3w−2)(w+1)}$$

38. $$\dfrac{4}{2x+5}+\dfrac{2}{x−1}$$

39. $$\dfrac{2y}{y+3}+\dfrac{3}{y−1}$$

Contestar

$$\dfrac{2y^2+y+9}{(y+3)(y−1)}$$

40. $$\dfrac{3z}{z−2}+\dfrac{1}{z+5}$$

41. $$\dfrac{5b}{a^2b−2a^2}+\dfrac{2b}{b^2−4}$$

Contestar

$$\dfrac{b(5b+10+2a^2)}{a^2(b−2)(b+2)}$$

42. $$\dfrac{4}{cd+3c}+\dfrac{1}{d^2−9}$$

43. $$\dfrac{−3m}{3m−3}+\dfrac{5m}{m^2+3m−4}$$

Contestar

$$-\dfrac{m}{m+4}$$

44. $$\dfrac{8}{4n+4}+\dfrac{6}{n^2−n−2}$$

45. $$\dfrac{3r}{r^2+7r+6}+\dfrac{9}{r^2+4r+3}$$

Contestar

$$\dfrac{3(r^2+6r+18)}{(r+1)(r+6)(r+3)}$$

46. $$\dfrac{2s}{s^2+2s−8}+\dfrac{4}{s^2+3s−10}$$

47. $$\dfrac{t}{t−6}−\dfrac{t−2}{t+6}$$

Contestar

$$\dfrac{2(7t−6)}{(t−6)(t+6)}$$

48. $$\dfrac{x−3}{x+6}−\dfrac{x}{x+3}$$

49. $$\dfrac{5a}{a+3}−\dfrac{a+2}{a+6}$$

Contestar

$$\dfrac{4a^2+25a−6}{(a+3)(a+6)}$$

50. $$\dfrac{3b}{b−2}−\dfrac{b−6}{b−8}$$

51. $$\dfrac{6}{m+6}−\dfrac{12m}{m^2−36}$$

Contestar

$$\dfrac{−6}{m−6}$$

52. $$\dfrac{4}{n+4}−\dfrac{8n}{n^2−16}$$

53. $$\dfrac{−9p−17}{p^2−4p−21}−\dfrac{p+1}{7−p}$$

Contestar

$$\dfrac{p+2}{p+3}$$

54. $$\dfrac{−13q−8}{q^2+2q−24}−\dfrac{q+2}{4−q}$$

55. $$\dfrac{−2r−16}{r^2+6r−16}−\dfrac{5}{2−r}$$

Contestar

$$\dfrac{3}{r−2}$$

56. $$\dfrac{2t−30}{t^2+6t−27}−\dfrac{2}{3−t}$$

57. $$\dfrac{2x+7}{10x−1}+3$$

Contestar

$$\dfrac{4(8x+1)}{10x−1}$$

58. $$\dfrac{8y−4}{5y+2}−6$$

59. $$\dfrac{3}{x^2−3x−4}−\dfrac{2}{x^2−5x+4}$$

Contestar

$$\dfrac{x−5}{(x−4)(x+1)(x−1)}$$

60. $$\dfrac{4}{x^2−6x+5}−\dfrac{3}{x^2−7x+10}$$

61. $$\dfrac{5}{x^2+8x−9}−\dfrac{4}{x^2+10x+9}$$

Contestar

$$\dfrac{1}{(x−1)(x+1)}$$

62. $$\dfrac{3}{2x^2+5x+2}−\dfrac{1}{2x^2+3x+1}$$

63. $$\dfrac{5a}{a−2}+\dfrac{9}{a}−\dfrac{2a+18}{a^2−2a}$$

Contestar

$$\dfrac{5a^2+7a−36}{a(a−2)}$$

64. $$\dfrac{2b}{b−5}+\dfrac{3}{2b}−\dfrac{2b−15}{2b^2−10b}$$

65. $$\dfrac{c}{c+2}+\dfrac{5}{c−2}−\dfrac{10c}{c^2−4}$$

Contestar

$$\dfrac{c−5}{c+2}$$

66. $$\dfrac{6d}{d−5}+\dfrac{1}{d+4}+\dfrac{7d−5}{d^2−d−20}$$

67. $$\dfrac{3d}{d+2}+\dfrac{4}{d}−\dfrac{d+8}{d^2+2d}$$

Contestar

$$\dfrac{3(d+1)}{d+2}$$

68. $$\dfrac{2q}{q+5}+\dfrac{3}{q−3}−\dfrac{13q+15}{q^2+2q−15}$$

Sumar y restar funciones racionales

En los siguientes ejercicios, encuentra a. $$R(x)=f(x)+g(x)$$ b $$R(x)=f(x)−g(x)$$.

69. $$f(x)=\dfrac{−5x−5}{x^2+x−6}$$ y $$g(x)=\dfrac{x+1}{2−x}$$

Contestar

a. $$R(x)=−\dfrac{(x+8)(x+1)}{(x−2)(x+3)}$$
b. $$R(x)=\dfrac{x+1}{x+3}$$

70. $$f(x)=\dfrac{−4x−24}{x^2+x−30}$$ y $$g(x)=\dfrac{x+7}{5−x}$$

71. $$f(x)=\dfrac{6x}{x^2−64}$$ y $$g(x)=\dfrac{3}{x−8}$$

Contestar

a. $$R(x)=\dfrac{3(3x+8)}{(x−8)(x+8)}$$
b. $$R(x)=\dfrac{3}{x+8}$$

72. $$f(x)=\dfrac{5}{x+7}$$ y $$g(x)=\dfrac{10x}{x^2−49}$$

## Ejercicios de escritura

73. Donald cree que eso $$\dfrac{3}{x}+\dfrac{4}{x}$$ es $$\dfrac{7}{2x}$$. ¿Está en lo correcto Donald? Explicar.

Contestar

Las respuestas variarán.

74. Explica cómo encuentras el Mínimo Común Denominador de $$x^2+5x+4$$ y $$x^2−16$$.

75. Felipe cree que $$\dfrac{1}{x}+\dfrac{1}{y}$$$$\dfrac{2}{x+y}$$.
a. Elija valores numéricos para x e y y evalúe $$\dfrac{1}{x}+\dfrac{1}{y}$$.
b. Evalúe $$\dfrac{2}{x+y}$$ para los mismos valores de x e y que utilizó en la parte a..
c. Explicar por qué Felipe se equivoca.
d. Encuentre la expresión correcta para $$1x+1y$$.

Contestar

a. Las respuestas variarán.
b. Las respuestas variarán.
c. Las respuestas variarán.
d. $$\dfrac{x+y}{x}$$

76. Simplifica la expresión $$\dfrac{4}{n^2+6n+9}−\dfrac{1}{n^2−9}$$ y explica todos tus pasos.

## Autocomprobación

a. Después de completar los ejercicios, utilice esta lista de verificación para evaluar su dominio de los objetivos de esta sección.

b. Después de revisar esta lista de verificación, ¿qué hará para tener confianza en todos los objetivos?

This page titled 7.3E: Ejercicios is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.