6.5E: Ejercicios
- Page ID
- 112412
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)La práctica hace la perfección
Reconocer y Utilizar el Método Apropiado para Factorizar un Polinomio Completamente
En los siguientes ejercicios, factorizar completamente.
1. \(2n^2+13n−7\)
- Responder
-
\((2n−1)(n+7)\)
2. \(8x^2−9x−3\)
3. \(a^5+9a^3\)
- Responder
-
\(a^3(a^2+9)\)
4. \(75m^3+12m\)
5. \(121r^2−s^2\)
- Responder
-
\((11r−s)(11r+s)\)
6. \(49b^2−36a^2\)
7. \(8m^2−32\)
- Responder
-
\(8(m−2)(m+2)\)
8. \(36q^2−100\)
9. \(25w^2−60w+36\)
- Responder
-
\((5w−6)^2\)
10. \(49b^2−112b+64\)
11. \(m^2+14mn+49n^2\)
- Responder
-
\((m+7n)^2\)
12. \(64x^2+16xy+y^2\)
13. \(7b^2+7b−42\)
- Responder
-
\(7(b+3)(b−2)\)
14. \(30n^2+30n+72\)
15. \(3x^4y−81xy\)
- Responder
-
\(3xy(x−3)(x^2+3x+9)\)
16. \(4x^5y−32x^2y\)
17. \(k^4−16\)
- Responder
-
\((k−2)(k+2)(k^2+4)\)
18. \(m^4−81\)
19. \(5x5y^2−80xy^2\)
- Responder
-
\(5xy^2(x^2+4)(x+2)(x−2)\)
20. \(48x^5y^2−243xy^2\)
21. \(15pq−15p+12q−12\)
- Responder
-
\(3(5p+4)(q−1)\)
22. \(12ab−6a+10b−5\)
23. \(4x^2+40x+84\)
- Responder
-
\(4(x+3)(x+7)\)
24. \(5q^2−15q−90\)
25. \(4u^5v+4u^2v^3\)
- Responder
-
\(u^2(u+1)(u^2−u+1)\)
26. \(5m^4n+320mn^4\)
27. \(4c^2+20cd+81d^2\)
- Responder
-
prime
28. \(25x^2+35xy+49y^2\)
29. \(10m^4−6250\)
- Responder
-
\(10(m−5)(m+5)(m^2+25)\)
30. \(3v^4−768\)
31. \(36x^2y+15xy−6y\)
- Responder
-
\(3y(3x+2)(4x−1)\)
32. \(60x^2y−75xy+30y\)
33. \(8x^3−27y^3\)
- Responder
-
\((2x−3y)(4x^2+6xy+9y^2)\)
34. \(64x^3+125y^3\)
35. \(y^6−1\)
- Responder
-
\((y+1)(y−1)(y^2−y+1)\)
36. \(y^6+1\)
37. \(9x^2−6xy+y^2−49\)
- Contestar
-
\((3x−y+7)(3x−y−7)\)
38. \(16x^2−24xy+9y^2−64\)
39. \((3x+1)^2−6(3x−1)+9\)
- Contestar
-
\((3x−2)2\)
40. \((4x−5)^2−7(4x−5)+12\)
Ejercicios de escritura
41. Explicar lo que significa factorizar un polinomio por completo.
- Contestar
-
Las respuestas variarán.
42. La diferencia de cuadrados se\(y^4−625\) puede factorizar como\((y^2−25)(y^2+25)\). Pero no está completamente factorizado. Qué más se debe hacer para factorizar completamente.
43. De todos los métodos de factorización cubiertos en este capítulo (GCF, agrupación, deshacer FOIL, método 'ac', productos especiales) ¿cuál es el más fácil para usted? ¿Cuál es el más difícil? Explique sus respuestas.
- Contestar
-
Las respuestas variarán.
44. Crea tres problemas de factoring que serían buenas preguntas de prueba para medir tus conocimientos de factoring. Mostrar las soluciones.
Autocomprobación
a. después de completar los ejercicios, utilice esta lista de verificación para evaluar su dominio de los objetivos de esta sección.
b. En una escala del 1 al 10, ¿cómo calificaría su dominio de esta sección a la luz de sus respuestas en la lista de verificación? ¿Cómo se puede mejorar esto?