Saltar al contenido principal
LibreTexts Español

7.7E: Ejercicios

  • Page ID
    112757
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Resolver desigualdades racionales

    En los siguientes ejercicios, resolver cada desigualdad racional y escribir la solución en notación de intervalos.

    1. \(\dfrac{x-3}{x+4} \geq 0\)

    Contestar

    \((-\infty,-4) \cup[3, \infty)\)

    2. \(\dfrac{x+6}{x-5} \geq 0\)

    3. \(\dfrac{x+1}{x-3} \leq 0\)

    Contestar

    \([-1,3)\)

    4. \(\dfrac{x-4}{x+2} \leq 0\)

    5. \(\dfrac{x-7}{x-1}>0\)

    Contestar

    \((-\infty, 1) \cup(7, \infty)\)

    6. \(\dfrac{x+8}{x+3}>0\)

    7. \(\dfrac{x-6}{x+5}<0\)

    Contestar

    \((-5,6)\)

    8. \(\dfrac{x+5}{x-2}<0\)

    9. \(\dfrac{3 x}{x-5}<1\)

    Contestar

    \(\left(-\dfrac{5}{2}, 5\right)\)

    10. \(\dfrac{5 x}{x-2}<1\)

    11. \(\dfrac{6 x}{x-6}>2\)

    Contestar

    \((-\infty,-3) \cup(6, \infty)\)

    12. \(\dfrac{3 x}{x-4}>2\)

    13. \(\dfrac{2 x+3}{x-6} \leq 1\)

    Contestar

    \([-9,6)\)

    14. \(\dfrac{4 x-1}{x-4} \leq 1\)

    15. \(\dfrac{3 x-2}{x-4} \geq 2\)

    Contestar

    \((-\infty,-6] \cup(4, \infty)\)

    16. \(\dfrac{4 x-3}{x-3} \geq 2\)

    17. \(\dfrac{1}{a}+\dfrac{2}{5}=\dfrac{1}{2}\)

    Contestar

    \(a=10\)

    18. \(\dfrac{1}{x^{2}-4 x-12}>0\)

    19. \(\dfrac{3}{x^{2}-5 x+4}<0\)

    Contestar

    \((1,4)\)

    20. \(\dfrac{4}{x^{2}+7 x+12}<0\)

    21. \(\dfrac{2}{2 x^{2}+x-15} \geq 0\)

    Contestar

    \((-\infty,-3) \cup\left(\dfrac{5}{2}, \infty\right)\)

    22. \(\dfrac{6}{3 x^{2}-2 x-5} \geq 0\)

    23. \(\dfrac{-2}{6 x^{2}-13 x+6} \leq 0\)

    Contestar

    \(\left(-\infty, \dfrac{2}{3}\right) \cup\left(\dfrac{3}{2}, \infty\right)\)

    24. \(\dfrac{-1}{10 x^{2}+11 x-6} \leq 0\)

    17. \(\dfrac{1}{a}+\dfrac{2}{5}=\dfrac{1}{2}\)

    Contestar

    \(a=10\)

    18. \(\dfrac{1}{x^{2}-4 x-12}>0\)

    19. \(\dfrac{3}{x^{2}-5 x+4}<0\)

    Contestar

    \((1,4)\)

    20. \(\dfrac{4}{x^{2}+7 x+12}<0\)

    25. \(\dfrac{1}{2}+\dfrac{12}{x^{2}}>\dfrac{5}{x}\)

    Contestar

    \((-\infty, 0) \cup(0,4) \cup(6, \infty)\)

    26. \(\dfrac{1}{3}+\dfrac{1}{x^{2}}>\dfrac{4}{3 x}\)

    27. \(\dfrac{1}{2}-\dfrac{4}{x^{2}} \leq \dfrac{1}{x}\)

    Contestar

    \([-2,0) \cup(0,4]\)

    28. \(\dfrac{1}{2}-\dfrac{3}{2 x^{2}} \geq \dfrac{1}{x}\)

    29. \(\dfrac{1}{x^{2}-16}<0\)

    Contestar

    \((-4,4)\)

    30. \(\dfrac{4}{x^{2}-25}>0\)

    31. \(\dfrac{4}{x-2} \geq \dfrac{3}{x+1}\)

    Contestar

    \([-10,-1) \cup(2, \infty)\)

    32. \(\dfrac{5}{x-1} \leq \dfrac{4}{x+2}\)

    Resolver una desigualdad con funciones racionales

    En los siguientes ejercicios, resolver cada desigualdad de función racional y escribir la solución en notación de intervalos.

    33. Dada la función\(R(x)=\dfrac{x-5}{x-2}\), encuentra los valores de\(x\) que hacen que la función sea menor o igual a 0.

    Contestar

    \((2,5]\)

    34. Dada la función\(R(x)=\dfrac{x+1}{x+3}\), encuentra los valores de\(x\) que hacen que la función sea menor o igual a 0.

    35. Dada la función\(R(x)=\dfrac{x-6}{x+2}\), encuentra los valores de\(x\) que hacen que la función sea menor o igual a 0.

    Contestar

    \((-\infty,-2) \cup[6, \infty)\)

    36. Dada la función\(R(x)=\dfrac{x+1}{x-4}\), encuentra los valores de\(x\) que hacen que la función sea menor o igual a 0.

    Ejercicios de escritura

    37. Escribe los pasos que usarías para explicarle a tu hermano pequeño la solución de desigualdades racionales.

    Contestar

    Las respuestas variarán

    38. Crear una desigualdad racional cuya solución sea\((-\infty,-2] \cup[4, \infty)\).


    This page titled 7.7E: Ejercicios is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform.