9.3E: Ejercicios
- Page ID
- 112685
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)La práctica hace la perfección
En los siguientes ejercicios, completa el cuadrado para hacer un trinomio cuadrado perfecto. Después escribe el resultado como un binomio al cuadrado.
-
- \(m^{2}-24 m\)
- \(x^{2}-11 x\)
- \(p^{2}-\frac{1}{3} p\)
-
- \(n^{2}-16 n\)
- \(y^{2}+15 y\)
- \(q^{2}+\frac{3}{4} q\)
-
- \(p^{2}-22 p\)
- \(y^{2}+5 y\)
- \(m^{2}+\frac{2}{5} m\)
-
- \(q^{2}-6 q\)
- \(x^{2}-7 x\)
- \(n^{2}-\frac{2}{3} n\)
- Contestar
-
1. a.\((m-12)^{2}\) b.\(\left(x-\frac{11}{2}\right)^{2}\) c.\(\left(p-\frac{1}{6}\right)^{2}\)
3. a.\((p-11)^{2}\) b.\(\left(y+\frac{5}{2}\right)^{2}\) c.\(\left(m+\frac{1}{5}\right)^{2}\)
En los siguientes ejercicios, resuelva completando la plaza.
5. \(u^{2}+2 u=3\)
6. \(z^{2}+12 z=-11\)
7. \(x^{2}-20 x=21\)
8. \(y^{2}-2 y=8\)
9. \(m^{2}+4 m=-44\)
10. \(n^{2}-2 n=-3\)
11. \(r^{2}+6 r=-11\)
12. \(t^{2}-14 t=-50\)
13. \(a^{2}-10 a=-5\)
14. \(b^{2}+6 b=41\)
15. \(x^{2}+5 x=2\)
16. \(y^{2}-3 y=2\)
17. \(u^{2}-14 u+12=-1\)
18. \(z^{2}+2 z-5=2\)
19. \(r^{2}-4 r-3=9\)
20. \(t^{2}-10 t-6=5\)
21. \(v^{2}=9 v+2\)
22. \(w^{2}=5 w-1\)
23. \(x^{2}-5=10 x\)
24. \(y^{2}-14=6 y\)
25. \((x+6)(x-2)=9\)
26. \((y+9)(y+7)=80\)
27. \((x+2)(x+4)=3\)
28. \((x-2)(x-6)=5\)
- Contestar
-
5. \(u=-3, u=1\)
7. \(x=-1, x=21\)
9. \(m=-2 \pm 2 \sqrt{10} i\)
11. \(r=-3 \pm \sqrt{2} i\)
13. \(a=5 \pm 2 \sqrt{5}\)
15. \(x=-\frac{5}{2} \pm \frac{\sqrt{33}}{2}\)
17. \(u=1, u=13\)
19. \(r=-2, r=6\)
21. \(v=\frac{9}{2} \pm \frac{\sqrt{89}}{2}\)
23. \(x=5 \pm \sqrt{30}\)
25. \(x=-7, x=3\)
27. \(x=-5, x=-1\)
En los siguientes ejercicios, resuelva completando la plaza.
29. \(3 m^{2}+30 m-27=6\)
30. \(2 x^{2}-14 x+12=0\)
31. \(2 n^{2}+4 n=26\)
32. \(5 x^{2}+20 x=15\)
33. \(2 c^{2}+c=6\)
34. \(3 d^{2}-4 d=15\)
35. \(2 x^{2}+7 x-15=0\)
36. \(3 x^{2}-14 x+8=0\)
37. \(2 p^{2}+7 p=14\)
38. \(3 q^{2}-5 q=9\)
39. \(5 x^{2}-3 x=-10\)
40. \(7 x^{2}+4 x=-3\)
- Contestar
-
29. \(m=-11, m=1\)
31. \(n=1 \pm \sqrt{14}\)
33. \(c=-2, c=\frac{3}{2}\)
35. \(x=-5, x=\frac{3}{2}\)
37. \(p=-\frac{7}{4} \pm \frac{\sqrt{161}}{4}\)
39. \(x=\frac{3}{10} \pm \frac{\sqrt{191}}{10} i\)
41. Resolver la ecuación\(x^{2}+10 x=-25\)
- mediante el uso de la propiedad Raíz Cuadrada
- al Completar la Plaza
- ¿Qué método prefieres? ¿Por qué?
42. Resuelve la ecuación\(y^{2}+8y=48\) completando el cuadrado y explica todos tus pasos.
- Contestar
-
41. Las respuestas variarán
Autocomprobación
a. después de completar los ejercicios, utilice esta lista de verificación para evaluar su dominio de los objetivos de esta sección.

b. Después de revisar esta lista de verificación, ¿qué harás para tener confianza en todos los objetivos?