12.5E: Ejercicios
- Page ID
- 112309
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)La práctica hace la perfección
En los siguientes ejercicios, expanda cada binomio usando el Triángulo de Pascal.
- \((x+y)^{4}\)
- \((a+b)^{8}\)
- \((m+n)^{10}\)
- \((p+q)^{9}\)
- \((x-y)^{5}\)
- \((a-b)^{6}\)
- \((x+4)^{4}\)
- \((x+5)^{3}\)
- \((y+2)^{5}\)
- \((y+1)^{7}\)
- \((z-3)^{5}\)
- \((z-2)^{6}\)
- \((4x-1)^{3}\)
- \((3x-1)^{5}\)
- \((3 x-4)^{4}\)
- \((3 x-5)^{3}\)
- \((2 x+3 y)^{3}\)
- \((3 x+5 y)^{3}\)
- Contestar
-
2. \(\begin{array}{l}{a^{8}+8 a^{7} b+28 a^{6} b^{2}+56 a^{5} b^{3}} {+70 a^{4} b^{4}+56 a^{3} b^{5}+28 a^{2} b^{6}} {+8 a b^{7}+b^{8}}\end{array}\)
4. \(\begin{array}{l}{p^{9}+9 p^{8} q+36 p^{7} q^{2}+84 p^{6} q^{3}} {+126 p^{5} q^{4}+126 p^{4} q^{5}+84 p^{3} q^{6}} {+36 p^{2} q^{7}+9 p q^{8}+q^{9}}\end{array}\)
6. \(\begin{array}{l}{a^{6}-6 a^{5} b+15 a^{4} b^{2}-20 a^{3} b^{3}} {+15 a^{2} b^{4}-6 a b^{5}+b^{6}}\end{array}\)
8. \(x^{3}+15 x^{2}+75 x+125\)
10. \(\begin{array}{l}{y^{7}+7 y^{6}+21 y^{5}+35 y^{4}+35 y^{3}} {+21 y^{2}+7 y+1}\end{array}\)
12. \(\begin{array}{l}{z^{6}-12 z^{5}+60 z^{4}-160 z^{3}+240 z^{2}} \\ {-192 z+64}\end{array}\)
14. \(\begin{array}{l}{243 x^{5}-405 x^{4}+270 x^{3}-90 x^{2}} {+15 x-1}\end{array}\)
16. \(27 x^{3}-135 x^{2}+225 x-125\)
18. \(27 x^{3}+135 x^{2} y+225 x y^{2}+125 y^{3}\)
-
- \(\left( \begin{array}{l}{8} \\ {1}\end{array}\right)\)
- \(\left( \begin{array}{l}{10} \\ {10}\end{array}\right)\)
- \(\left( \begin{array}{l}{6} \\ {0}\end{array}\right)\)
- \(\left( \begin{array}{l}{9} \\ {3}\end{array}\right)\)
-
- \(\left( \begin{array}{l}{7} \\ {1}\end{array}\right)\)
- \(\left( \begin{array}{l}{4} \\ {4}\end{array}\right)\)
- \(\left( \begin{array}{l}{3} \\ {0}\end{array}\right)\)
- \(\left( \begin{array}{l}{5} \\ {3}\end{array}\right)\)
-
- \(\left( \begin{array}{l}{3} \\ {1}\end{array}\right)\)
- \(\left( \begin{array}{l}{9} \\ {9}\end{array}\right)\)
- \(\left( \begin{array}{l}{7} \\ {0}\end{array}\right)\)
- \(\left( \begin{array}{l}{5} \\ {3}\end{array}\right)\)
-
- \(\left( \begin{array}{l}{4} \\ {1}\end{array}\right)\)
- \(\left( \begin{array}{l}{5} \\ {5}\end{array}\right)\)
- \(\left( \begin{array}{l}{8} \\ {0}\end{array}\right)\)
- \(\left( \begin{array}{l}{11} \\ {9}\end{array}\right)\)
- Contestar
-
2.
- \(7\)
- \(1\)
- \(1\)
- \(45\)
4.
- \(4\)
- \(1\)
- \(1\)
- \(55\)
En los siguientes ejercicios, ampliar cada binomio.
- \((x+y)^{3}\)
- \((m+n)^{5}\)
- \((a+b)^{6}\)
- \((s+t)^{7}\)
- \((x-2)^{4}\)
- \((y-3)^{4}\)
- \((p-1)^{5}\)
- \((q-4)^{3}\)
- \((3x-y)^{5}\)
- \((5x-2y)^{4}\)
- \((2x+5y)^{4}\)
- \((3x+4y)^{5}\)
- Contestar
-
2. \(\begin{array}{l}{m^{5}+5 m^{4} n+10 m^{3} n^{2}+10 m^{2} n^{3}} {+5 m n^{4}+n^{5}}\end{array}\)
4. \(\begin{array}{l}{s^{7}+7 s^{6} t+21 s^{5} t^{2}+35 s^{4} t^{3}} {+35 s^{3} t^{4}+21 s^{2} t^{5}+7 s t^{6}+t^{7}}\end{array}\)
6. \(y^{4}-12 y^{3}+54 y^{2}-108 y+81\)
8. \(q^{3}-12 q^{2}+48 q-64\)
10. \(\begin{array}{l}{625 x^{4}-1000 x^{3} y+600 x^{2} y^{2}} {-160 x y^{3}+16 y^{4}}\end{array}\)
12. \(\begin{array}{l}{243 x^{5}+1620 x^{4} y+4320 x^{3} y^{2}} {+5760 x^{2} y^{3}+3840 x y^{4}+1024 y^{5}}\end{array}\)
En los siguientes ejercicios, encuentra el término indicado en la expansión del binomio.
- Sexto periodo de\((x+y)^{10}\)
- Quinto mandato de\((a+b)^{9}\)
- Cuarto mandato de\((x-y)^{8}\)
- Séptimo término de\((x-y)^{11}\)
- Contestar
-
2. \(126a^{5} b^{4}\)
4. \(462x^{5} y^{6}\)
En los siguientes ejercicios, encuentra el coeficiente del término indicado en la expansión del binomio.
- \(y^{3}\)plazo de\((y+5)^{4}\)
- \(x^{6}\)plazo de\((x+2)^{8}\)
- \(x^{5}\)plazo de\((x-4)^{6}\)
- \(x^{7}\)plazo de\((x-3)^{9}\)
- \(a^{4} b^{2}\)plazo de\((2 a+b)^{6}\)
- \(p^{5} q^{4}\)plazo de\((3 p+q)^{9}\)
- Contestar
-
2. \(112\)
4. \(324\)
6. \(30,618\)
- En tus propias palabras explica cómo encontrar las filas del Triángulo de Pascal. Escribe las primeras cinco filas del Triángulo de Pascal.
- En sus propias palabras, explique el patrón de exponentes para cada variable en la expansión de.
- En sus propias palabras, explique la diferencia entre\((a+b)^{n}\) y\((a-b)^{n}\).
- En sus propias palabras, explique cómo encontrar un término específico en la expansión de un binomio sin expandir todo el asunto. Usa un ejemplo para ayudar a explicar.
- Contestar
-
2. Las respuestas variarán
4. Las respuestas variarán
Autocomprobación
a. después de completar los ejercicios, utilice esta lista de verificación para evaluar su dominio de los objetivos de esta sección.
b. En una escala del 1 al 10, ¿cómo calificaría su dominio de esta sección a la luz de sus respuestas en la lista de verificación? ¿Cómo se puede mejorar esto?