Saltar al contenido principal
LibreTexts Español

12.5E: Ejercicios

  • Page ID
    112309
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    La práctica hace la perfección

    Ejercicio\(\PageIndex{19}\) Use Pascal's Triangle to Expand a Binomial

    En los siguientes ejercicios, expanda cada binomio usando el Triángulo de Pascal.

    1. \((x+y)^{4}\)
    2. \((a+b)^{8}\)
    3. \((m+n)^{10}\)
    4. \((p+q)^{9}\)
    5. \((x-y)^{5}\)
    6. \((a-b)^{6}\)
    7. \((x+4)^{4}\)
    8. \((x+5)^{3}\)
    9. \((y+2)^{5}\)
    10. \((y+1)^{7}\)
    11. \((z-3)^{5}\)
    12. \((z-2)^{6}\)
    13. \((4x-1)^{3}\)
    14. \((3x-1)^{5}\)
    15. \((3 x-4)^{4}\)
    16. \((3 x-5)^{3}\)
    17. \((2 x+3 y)^{3}\)
    18. \((3 x+5 y)^{3}\)
    Contestar

    2. \(\begin{array}{l}{a^{8}+8 a^{7} b+28 a^{6} b^{2}+56 a^{5} b^{3}} {+70 a^{4} b^{4}+56 a^{3} b^{5}+28 a^{2} b^{6}} {+8 a b^{7}+b^{8}}\end{array}\)

    4. \(\begin{array}{l}{p^{9}+9 p^{8} q+36 p^{7} q^{2}+84 p^{6} q^{3}} {+126 p^{5} q^{4}+126 p^{4} q^{5}+84 p^{3} q^{6}} {+36 p^{2} q^{7}+9 p q^{8}+q^{9}}\end{array}\)

    6. \(\begin{array}{l}{a^{6}-6 a^{5} b+15 a^{4} b^{2}-20 a^{3} b^{3}} {+15 a^{2} b^{4}-6 a b^{5}+b^{6}}\end{array}\)

    8. \(x^{3}+15 x^{2}+75 x+125\)

    10. \(\begin{array}{l}{y^{7}+7 y^{6}+21 y^{5}+35 y^{4}+35 y^{3}} {+21 y^{2}+7 y+1}\end{array}\)

    12. \(\begin{array}{l}{z^{6}-12 z^{5}+60 z^{4}-160 z^{3}+240 z^{2}} \\ {-192 z+64}\end{array}\)

    14. \(\begin{array}{l}{243 x^{5}-405 x^{4}+270 x^{3}-90 x^{2}} {+15 x-1}\end{array}\)

    16. \(27 x^{3}-135 x^{2}+225 x-125\)

    18. \(27 x^{3}+135 x^{2} y+225 x y^{2}+125 y^{3}\)

    Ejercicio\(\PageIndex{20}\) Evaluate a Binomial Coefficient
      1. \(\left( \begin{array}{l}{8} \\ {1}\end{array}\right)\)
      2. \(\left( \begin{array}{l}{10} \\ {10}\end{array}\right)\)
      3. \(\left( \begin{array}{l}{6} \\ {0}\end{array}\right)\)
      4. \(\left( \begin{array}{l}{9} \\ {3}\end{array}\right)\)
      1. \(\left( \begin{array}{l}{7} \\ {1}\end{array}\right)\)
      2. \(\left( \begin{array}{l}{4} \\ {4}\end{array}\right)\)
      3. \(\left( \begin{array}{l}{3} \\ {0}\end{array}\right)\)
      4. \(\left( \begin{array}{l}{5} \\ {3}\end{array}\right)\)
      1. \(\left( \begin{array}{l}{3} \\ {1}\end{array}\right)\)
      2. \(\left( \begin{array}{l}{9} \\ {9}\end{array}\right)\)
      3. \(\left( \begin{array}{l}{7} \\ {0}\end{array}\right)\)
      4. \(\left( \begin{array}{l}{5} \\ {3}\end{array}\right)\)
      1. \(\left( \begin{array}{l}{4} \\ {1}\end{array}\right)\)
      2. \(\left( \begin{array}{l}{5} \\ {5}\end{array}\right)\)
      3. \(\left( \begin{array}{l}{8} \\ {0}\end{array}\right)\)
      4. \(\left( \begin{array}{l}{11} \\ {9}\end{array}\right)\)
    Contestar

    2.

    1. \(7\)
    2. \(1\)
    3. \(1\)
    4. \(45\)

    4.

    1. \(4\)
    2. \(1\)
    3. \(1\)
    4. \(55\)
    Ejercicio\(\PageIndex{21}\) Use the Binomial Theorem to Expand a Binomial

    En los siguientes ejercicios, ampliar cada binomio.

    1. \((x+y)^{3}\)
    2. \((m+n)^{5}\)
    3. \((a+b)^{6}\)
    4. \((s+t)^{7}\)
    5. \((x-2)^{4}\)
    6. \((y-3)^{4}\)
    7. \((p-1)^{5}\)
    8. \((q-4)^{3}\)
    9. \((3x-y)^{5}\)
    10. \((5x-2y)^{4}\)
    11. \((2x+5y)^{4}\)
    12. \((3x+4y)^{5}\)
    Contestar

    2. \(\begin{array}{l}{m^{5}+5 m^{4} n+10 m^{3} n^{2}+10 m^{2} n^{3}} {+5 m n^{4}+n^{5}}\end{array}\)

    4. \(\begin{array}{l}{s^{7}+7 s^{6} t+21 s^{5} t^{2}+35 s^{4} t^{3}} {+35 s^{3} t^{4}+21 s^{2} t^{5}+7 s t^{6}+t^{7}}\end{array}\)

    6. \(y^{4}-12 y^{3}+54 y^{2}-108 y+81\)

    8. \(q^{3}-12 q^{2}+48 q-64\)

    10. \(\begin{array}{l}{625 x^{4}-1000 x^{3} y+600 x^{2} y^{2}} {-160 x y^{3}+16 y^{4}}\end{array}\)

    12. \(\begin{array}{l}{243 x^{5}+1620 x^{4} y+4320 x^{3} y^{2}} {+5760 x^{2} y^{3}+3840 x y^{4}+1024 y^{5}}\end{array}\)

    Ejercicio\(\PageIndex{22}\) Use the Binomial Theorem to Expand a Binomial

    En los siguientes ejercicios, encuentra el término indicado en la expansión del binomio.

    1. Sexto periodo de\((x+y)^{10}\)
    2. Quinto mandato de\((a+b)^{9}\)
    3. Cuarto mandato de\((x-y)^{8}\)
    4. Séptimo término de\((x-y)^{11}\)
    Contestar

    2. \(126a^{5} b^{4}\)

    4. \(462x^{5} y^{6}\)

    Ejercicio\(\PageIndex{23}\) Use the Binomial Theorem to Expand a Binomial

    En los siguientes ejercicios, encuentra el coeficiente del término indicado en la expansión del binomio.

    1. \(y^{3}\)plazo de\((y+5)^{4}\)
    2. \(x^{6}\)plazo de\((x+2)^{8}\)
    3. \(x^{5}\)plazo de\((x-4)^{6}\)
    4. \(x^{7}\)plazo de\((x-3)^{9}\)
    5. \(a^{4} b^{2}\)plazo de\((2 a+b)^{6}\)
    6. \(p^{5} q^{4}\)plazo de\((3 p+q)^{9}\)
    Contestar

    2. \(112\)

    4. \(324\)

    6. \(30,618\)

    Ejercicio\(\PageIndex{24}\) Writing Exercises
    1. En tus propias palabras explica cómo encontrar las filas del Triángulo de Pascal. Escribe las primeras cinco filas del Triángulo de Pascal.
    2. En sus propias palabras, explique el patrón de exponentes para cada variable en la expansión de.
    3. En sus propias palabras, explique la diferencia entre\((a+b)^{n}\) y\((a-b)^{n}\).
    4. En sus propias palabras, explique cómo encontrar un término específico en la expansión de un binomio sin expandir todo el asunto. Usa un ejemplo para ayudar a explicar.
    Contestar

    2. Las respuestas variarán

    4. Las respuestas variarán

    Autocomprobación

    a. después de completar los ejercicios, utilice esta lista de verificación para evaluar su dominio de los objetivos de esta sección.

    Esta figura muestra una tabla con cuatro filas y cuatro columnas. La primera fila es la fila de encabezado y lee. “Puedo”, “Con confianza”, “Con algo de ayuda” y “No, no lo consigo”. La primera columna, que comienza en la segunda fila dice: “Usar el Triángulo de Pascal para Expandir un Binomial”, “Evaluar un Coeficiente Binomial” y “Usar el Teorema Binomial para Expandir un Binomial”. Las columnas restantes están en blanco.
    Figura 12.4.31

    b. En una escala del 1 al 10, ¿cómo calificaría su dominio de esta sección a la luz de sus respuestas en la lista de verificación? ¿Cómo se puede mejorar esto?


    This page titled 12.5E: Ejercicios is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform.