Términos Clave Capítulo 03: Gráficas y Funciones
- Page ID
- 112690
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Palabras (o palabras que tienen la misma definición) | La definición es sensible a mayúsculas | (Opcional) Imagen para mostrar con la definición [No se muestra en el Glosario, solo en las páginas emergentes] | (Opcional) Leyenda para la imagen | (Opcional) Enlace externo o interno | (Opcional) Fuente para Definición |
---|---|---|---|---|---|
(Ej. “Genético, Hereditario, ADN...”) | (Ej. “Relacionado con genes o herencia”) | ![]() | La infame doble hélice | https://bio.libretexts.org/ | CC-BY-SA; Delmar Larsen |
Palabra (s) | Definición | Imagen | Leyenda | Enlace | Fuente |
---|---|---|---|---|---|
línea límite | La línea con ecuación\(Ax+By=C\) es la línea límite que separa la región donde\(Ax+By>C\) de la región donde\(Ax+By<C\). | ||||
dominio de una relación | El dominio de una relación son todos los\(x\) -valores en los pares ordenados de la relación. | ||||
función | Una función es una relación que asigna a cada elemento en su dominio exactamente un elemento en el rango. | ||||
línea horizontal | Una línea horizontal es la gráfica de una ecuación de la forma\(y=b\). La línea pasa a través del eje y en\((0,b)\). | ||||
intercepciones de una línea | Los puntos donde una línea cruza el\(x\) eje y el\(y\) eje -se denominan las intercepciones de la línea. | ||||
ecuación lineal | Una ecuación de la forma\(Ax+By=C\), donde\(A\) y no\(B\) son ambos cero, se denomina ecuación lineal en dos variables. | ||||
desigualdad lineal | Una desigualdad lineal es una desigualdad que puede escribirse en una de las siguientes formas:\(Ax+By>C\),\(Ax+By≥C\),\(Ax+By<C\), o\(Ax+By≤C\), donde\(A\) y no\(B\) son ambas cero. | ||||
mapeo | A veces se usa un mapeo para mostrar una relación. Las flechas muestran el emparejamiento de los elementos del dominio con los elementos del rango. | ||||
par ordenado | Un par ordenado,\((x,y)\) da las coordenadas de un punto en un sistema de coordenadas rectangular. El primer número es la\(x\) coordenada. El segundo número es la\(y\) coordenada. | ||||
origen | Al punto\((0,0)\) se le llama el origen. Es el punto donde se cruzan los\(x\) ejes\(y\) -axis y -axis. | ||||
líneas paralelas | Las líneas paralelas son líneas en el mismo plano que no se cruzan. | ||||
líneas perpendiculares | Las líneas perpendiculares son líneas en el mismo plano que forman un ángulo recto. | ||||
forma de punto-pendiente | La forma punto-pendiente de una ecuación de una línea con pendiente\(m\) y que contiene el punto\((x_1,y_1)\) es\(y−y_1=m(x−x_1)\). | ||||
rango de una relación | El rango de una relación es todos los valores\(y\) - en los pares ordenados de la relación. | ||||
relación | Una relación es cualquier conjunto de pares ordenados,\((x,y)\). Todos los\(x\) valores -en los pares ordenados juntos conforman el dominio. Todos los\(y\) valores -en los pares ordenados juntos conforman el rango. | ||||
solución de una ecuación lineal en dos variables | Un par ordenado\((x,y)\) es una solución de la ecuación lineal\(Ax+By=C\), si la ecuación es una declaración verdadera cuando los\(y\) valores\(x\) - y -del par ordenado se sustituyen en la ecuación. | ||||
solución a una desigualdad lineal | Un par ordenado\((x,y)\) es una solución a una desigualdad lineal si la desigualdad es cierta cuando sustituimos los valores de\(x\) y\(y\). | ||||
forma estándar de una ecuación lineal | Una ecuación lineal está en forma estándar cuando se escribe\(Ax+By=C\). | ||||
línea vertical | Una línea vertical es la gráfica de una ecuación de la forma\(x=a\). La línea pasa a través del\(x\) eje -en\((𝑎,0)\). |