4.11: Examen de Aptitud
- Page ID
- 112303
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Examen de competencia
En la siguiente expresión, especifique el número de términos que están presentes, luego enumérelos.
\(3a(a+1)−(a+2)(a−3)\)
- Contestar
-
dos:\(3a(a+1), −(a+2)(a−3)\)
Enumere, si los hay, los factores comunes de:
\(20x^3y^2 + 15x^3y^2z^2 + 10x^3z^2\)
- Contestar
-
\(5x^3\)
Cuantos\(y^2(b+2)\) hay en\(8xy^2(b+2)(b-6)\)
- Contestar
-
\(8x(b-6)\)
Escribe el coeficiente de\(x^3\) in\(8x^3y^3z\)
- Contestar
-
\(8y^3z\)
Encuentra el valor de\(P^2\) si\(k = 4\) y\(a = 3\).
\(P^2 = ka^3\)
- Contestar
-
\(108\)
Clasificar el polinomio que se da a continuación como monomio, bionomio, trinomio, o ninguno de estos. Especificar el grado del polinomio y escribir el coeficiente numérico de cada término.
\(3x^3y + 4xy^4 + 8x^2y^2z^0w, z \not = 0\)
- Contestar
-
trinomio; 5º grado;
coeficientes numéricos: 3, 4, 8
Simplifica las expresiones algebraicas para los siguientes problemas.
\(4x^2 + 3x + 2x + 11x^2 - 3\)
- Contestar
-
\(15x^2 + 5x - 3\)
\(3a[2(a+1)+4]−18a\)
- Contestar
-
\(6a^2\)
\((x+2)(x+4)\)
- Contestar
-
\(x^2 + 6x + 8\)
\((3a−7)(2a+10)\)
- Contestar
-
\(6a^2 + 16a - 70\)
\((y+3)^2\)
- Contestar
-
\(y^2 + 6y + 9\)
\((6a + 7y)^2\)
- Contestar
-
\(36a^2 + 84ay + 49y^2\)
\((4x-9y)^2\)
- Contestar
-
\(16x^2 - 72xy + 81y^2\)
\(3x^2(2x+5)(3x+1)\)
- Contestar
-
\(18x^4 + 51x^3 + 15x^2\)
\((3a−b)(4a−3b)\)
- Contestar
-
\(12a^2 - 13ab + 3b^2\)
\(-6y^2(2y+3y^2-4)\)
- Contestar
-
\(-18y^4 - 12y^3 + 24y^2\)
\(-4b^3(b^2-1)^2\)
- Contestar
-
\(-4b^7 + 8b^5 - 4b^3\)
\((2a^3 + 3b^2)^2\)
- Contestar
-
\(4a^6 + 12a^3b^2 + 9b^4\)
\(6a(a-2)-(2a^2 + a - 11)\)
- Contestar
-
\(4a^2 - 13a + 11\)
\((5h+2k)(5h−2k)\)
- Contestar
-
\(25h^2 - 4k^2\)
Restar\(4a^2 - 10\) de\(2a^2 + 6a + 1\)
- Contestar
-
\(-2a^2 + 6a + 11\)
Agregar tres veces\(6x-1\) a dos veces\(-4x + 5\)
- Contestar
-
\(10x+7\)
Evaluar\(6k^2 + 2k - 7\) si\(k = -1\)
- Contestar
-
\(-3\)
Evaluar\(-2m(m-3)^2\) si\(m = -4\)
- Contestar
-
\(392\)
¿De qué es el dominio\(y = \dfrac{3x-7}{x+3}\)?
- Contestar
-
Todos los números reales excepto\(-3\)