Saltar al contenido principal

4.11: Examen de Aptitud

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

Examen de competencia

Ejercicio$$\PageIndex{1}$$

En la siguiente expresión, especifique el número de términos que están presentes, luego enumérelos.

$$3a(a+1)−(a+2)(a−3)$$

Contestar

dos:$$3a(a+1), −(a+2)(a−3)$$

Ejercicio$$\PageIndex{2}$$

Enumere, si los hay, los factores comunes de:

$$20x^3y^2 + 15x^3y^2z^2 + 10x^3z^2$$

Contestar

$$5x^3$$

Ejercicio$$\PageIndex{3}$$

Cuantos$$y^2(b+2)$$ hay en$$8xy^2(b+2)(b-6)$$

Contestar

$$8x(b-6)$$

Ejercicio$$\PageIndex{4}$$

Escribe el coeficiente de$$x^3$$ in$$8x^3y^3z$$

Contestar

$$8y^3z$$

Ejercicio$$\PageIndex{5}$$

Encuentra el valor de$$P^2$$ si$$k = 4$$ y$$a = 3$$.

$$P^2 = ka^3$$

Contestar

$$108$$

Ejercicio$$\PageIndex{6}$$

Clasificar el polinomio que se da a continuación como monomio, bionomio, trinomio, o ninguno de estos. Especificar el grado del polinomio y escribir el coeficiente numérico de cada término.

$$3x^3y + 4xy^4 + 8x^2y^2z^0w, z \not = 0$$

Contestar

coeficientes numéricos: 3, 4, 8

Simplifica las expresiones algebraicas para los siguientes problemas.

Ejercicio$$\PageIndex{7}$$

$$4x^2 + 3x + 2x + 11x^2 - 3$$

Contestar

$$15x^2 + 5x - 3$$

Ejercicio$$\PageIndex{8}$$

$$3a[2(a+1)+4]−18a$$

Contestar

$$6a^2$$

Ejercicio$$\PageIndex{9}$$

$$(x+2)(x+4)$$

Contestar

$$x^2 + 6x + 8$$

Ejercicio$$\PageIndex{10}$$

$$(3a−7)(2a+10)$$

Contestar

$$6a^2 + 16a - 70$$

Ejercicio$$\PageIndex{11}$$

$$(y+3)^2$$

Contestar

$$y^2 + 6y + 9$$

Ejercicio$$\PageIndex{12}$$

$$(6a + 7y)^2$$

Contestar

$$36a^2 + 84ay + 49y^2$$

Ejercicio$$\PageIndex{13}$$

$$(4x-9y)^2$$

Contestar

$$16x^2 - 72xy + 81y^2$$

Ejercicio$$\PageIndex{14}$$

$$3x^2(2x+5)(3x+1)$$

Contestar

$$18x^4 + 51x^3 + 15x^2$$

Ejercicio$$\PageIndex{15}$$

$$(3a−b)(4a−3b)$$

Contestar

$$12a^2 - 13ab + 3b^2$$

Ejercicio$$\PageIndex{16}$$

$$-6y^2(2y+3y^2-4)$$

Contestar

$$-18y^4 - 12y^3 + 24y^2$$

Ejercicio$$\PageIndex{17}$$

$$-4b^3(b^2-1)^2$$

Contestar

$$-4b^7 + 8b^5 - 4b^3$$

Ejercicio$$\PageIndex{18}$$

$$(2a^3 + 3b^2)^2$$

Contestar

$$4a^6 + 12a^3b^2 + 9b^4$$

Ejercicio$$\PageIndex{19}$$

$$6a(a-2)-(2a^2 + a - 11)$$

Contestar

$$4a^2 - 13a + 11$$

Ejercicio$$\PageIndex{20}$$

$$(5h+2k)(5h−2k)$$

Contestar

$$25h^2 - 4k^2$$

Ejercicio$$\PageIndex{21}$$

Restar$$4a^2 - 10$$ de$$2a^2 + 6a + 1$$

Contestar

$$-2a^2 + 6a + 11$$

Ejercicio$$\PageIndex{22}$$

Agregar tres veces$$6x-1$$ a dos veces$$-4x + 5$$

Contestar

$$10x+7$$

Ejercicio$$\PageIndex{23}$$

Evaluar$$6k^2 + 2k - 7$$ si$$k = -1$$

Contestar

$$-3$$

Ejercicio$$\PageIndex{24}$$

Evaluar$$-2m(m-3)^2$$ si$$m = -4$$

Contestar

$$392$$

Ejercicio$$\PageIndex{25}$$

¿De qué es el dominio$$y = \dfrac{3x-7}{x+3}$$?

Contestar

Todos los números reales excepto$$-3$$

This page titled 4.11: Examen de Aptitud is shared under a CC BY license and was authored, remixed, and/or curated by Denny Burzynski & Wade Ellis, Jr. (OpenStax CNX) .