1.E: Ejercicios de revisión y examen de muestra
- Page ID
- 110111
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Ejercicios de revisión
Ejercicio\(\PageIndex{1}\) Real Numbers and the Number Line
Elija una escala apropiada y grafique los siguientes conjuntos de números reales en una recta numérica.
- \(\{−4, 0, 4\}\)
- \(\{−30, 10, 40\}\)
- \(\{−12, −3, 9\}\)
- \(\{−10, 8, 10\}\)
- Contestar
-
1.
Figura 1.E.1
3.
Figura 1.E.2
Ejercicio\(\PageIndex{2}\) Real Numbers and the Number Line
Rellene el espacio en blanco con\(<, =,\text{ or }>\).
- \(0\underline{\quad}-9\)
- \(-75\underline{\quad}-5\)
- \(-12\underline{\quad}-(-3)\)
- \(-(-23)\underline{\quad}23\)
- \(|-20|\underline{\quad}-|-30|\)
- \(-|6|\underline{\quad}-|-(-8)|\)
- Contestar
-
1. \(>\)
3. \(<\)
5. \(>\)
Ejercicio\(\PageIndex{3}\) Real Numbers and the Number Line
Determinar lo desconocido.
- \(|?|=2\)
- \(|?|=1\)
- \(|?|=-7\)
- \(|?|=0\)
- Contestar
-
1. \(\pm 2\)
3. \(Ø\), Sin solución
Ejercicio\(\PageIndex{4}\) Real Numbers and the Number Line
Traducir lo siguiente en una declaración matemática.
- El ocho negativo es menor o igual a cero.
- Setenta y ocho no es igual a doce.
- Negativo nueve es mayor que negativo diez.
- Cero es igual a cero.
- Contestar
-
1. \(-8\leq 0\)
3. \(-9>-10\)
Ejercicio\(\PageIndex{5}\) Adding and Subtracting Integers
Simplificar.
- \(12+(−7)\)
- \(20+(−32)\)
- \(−23−(−7)\)
- \(−8−(−8)\)
- \(−3−(−13)+(−1)\)
- \(9+(−15)−(−8)\)
- \((7−10)−3\)
- \((−19+6)−2\)
- Contestar
-
1. \(5\)
3. \(-16\)
5. \(9\)
7. \(-6\)
Ejercicio\(\PageIndex{6}\) Adding and Subtracting Integers
Encuentra la distancia entre los números dados en una recta numérica.
- \(−8\)y\(14\)
- \(−35\)y\(−6\)
- ¿Qué es\(2\) menos que\(17\)?
- ¿Qué es\(3\) menos que\(−20\)?
- Restar\(30\) de la suma de\(8\) y\(12\).
- Restar\(7\) de la diferencia de\(−5\) y\(7\).
- Un avión que volaba a\(22,000\) pies descendió\(8,500\) pies y luego ascendió\(5,000\) pies. ¿Cuál es la nueva altitud del avión?
- El ancho de un rectángulo es\(5\) pulgadas menos que su longitud. Si la longitud mide\(22\) pulgadas, entonces determina el ancho.
- Contestar
-
1. \(22\)unidades
3. \(15\)
5. \(-10\)
7. \(18,500\)pies
Ejercicio\(\PageIndex{7}\) Multiplying and Dividing Integers
Simplificar.
- \(10÷5⋅2\)
- \(36÷6⋅2\)
- \(−6(4)÷2(−3)\)
- \(120÷(−5)(−3)(−2)\)
- \(−8(−5)÷0\)
- \(−24(0)÷8\)
- Encuentra el producto de\(−6\) y\(9\).
- Encuentra el cociente de\(−54\) y\(−3\).
- James pudo conducir\(234\) millas con\(9\) galones de gasolina. ¿Cuántas millas por galón obtuvo?
- Si un autobús viaja a una velocidad promedio de\(54\) millas por hora durante\(3\) horas, entonces, ¿hasta dónde viaja el autobús?
- Contestar
-
1. \(4\)
3. \(36\)
5. Sin definir
7. \(-54\)
9. \(26\)millas por galón
Ejercicio\(\PageIndex{8}\) Fractions
Reduzca cada fracción a los términos más bajos.
- \(\frac{180}{300}\)
- \(\frac{252}{324}\)
- Convertir a un número mixto:\(\frac{23}{8}\).
- Convertir a una fracción impropia:\(3\frac{5}{9}\).
- Contestar
-
1. \(\frac{3}{5}\)
3. \(2\frac{7}{8}\)
Ejercicio\(\PageIndex{9}\) Fractions
Simplificar.
- \(\frac{3}{5}(−\frac{2}{7})\)
- \(−\frac{5}{8}(−\frac{1}{3})\)
- \(−\frac{3}{4}÷\frac{6}{7}\)
- \(\frac{4}{15}÷\frac{28}{3}\)
- \(4\frac{4}{5}÷6\)
- \(5÷8\frac{1}{3}\)
- \(\frac{5}{4}÷\frac{15}{2}⋅6\)
- \(\frac{5}{24}÷\frac{3}{2}÷\frac{5}{12}\)
- \(\frac{1}{12}−\frac{1}{4}\)
- \(\frac{5}{6}−\frac{3}{14}\)
- \(\frac{3}{4}+\frac{2}{3}−\frac{1}{12}\)
- \(\frac{3}{10}+\frac{5}{12}−\frac{1}{6}\)
- Restar\(\frac{2}{3}\) de la suma de\(−\frac{1}{2}\) y\(\frac{2}{9}\).
- Restar\(\frac{5}{6}\) de la diferencia de\(\frac{1}{3}\) y\(\frac{7}{2}\).
- Si un autobús viaja a una velocidad promedio de\(54\) millas por hora durante\(2\frac{1}{3}\) horas, entonces, ¿hasta dónde viaja el autobús?
- Determinar la longitud de la esgrima necesaria para encerrar una pluma rectangular con dimensiones\(12\frac{1}{2}\) pies a\(8\frac{3}{4}\) pies.
- Contestar
-
1. \(-\frac{6}{35}\)
3. \(-\frac{7}{8}\)
5. \(\frac{4}{5}\)
7. \(1\)
9. \(-\frac{1}{6}\)
11. \(\frac{4}{3}\)
13. \(-\frac{17}{18}\)
15. \(126\)millas
Ejercicio\(\PageIndex{10}\) Decimals and Percents
- Escribir como un número mixto:\(5.32\).
- Escribe como decimal:\(7\frac{3}{25}\)
- Contestar
-
1. \(5\frac{8}{25}\)
Ejercicio\(\PageIndex{11}\) Decimals and Percents
Realizar las operaciones.
- \(6.032+2.19\)
- \(12.106−9.21\)
- \(4.23×5.13\)
- \(9.246÷4.02\)
- Contestar
-
1. \(8.222\)
3. \(21.6999\)
Ejercicio\(\PageIndex{12}\) Decimals and Percents
Convertir a decimal.
- \(7.2\)%
- \(5\frac{3}{8}\)%
- \(147\)%
- \(27\frac{1}{2}\)%
- Contestar
-
1. \(0.072\)
3. \(1.47\)
Ejercicio\(\PageIndex{13}\) Decimals and Percents
Convertir a un porcentaje.
- \(0.055\)
- \(1.75\)
- \(\frac{9}{10}\)
- \(\frac{5}{6}\)
- Mary compró\(3\) cajas de playeras por un total de $\(126\). Si cada caja contiene\(24\) camisetas, entonces ¿cuál es el costo de cada camiseta?
- Un punto de venta está ofreciendo\(12\)% de descuento en el\(39.99\) precio original $ de las zapatillas de tenis. ¿Cuál es el precio después del descuento?
- Si un artículo cuesta $\(129.99\), entonces ¿cuál es el total después de agregar\(7\frac{1}{4}\)% de impuesto a las ventas?
- Se estima que\(8.3\)% del total de la población estudiantil viaja al campus cada día. Si hay\(13,000\) estudiantes, entonces estime el número de estudiantes que viajan al campus.
- Contestar
-
1. \(5.5\)%
3. \(90\)%
5. $\(1.75\)
7. $\(139.41\)
Ejercicio\(\PageIndex{14}\) Exponents and Square Roots
Simplificar.
- \(8^{2}\)
- \((−5)^{2}\)
- \(−4^{2}\)
- \(−(−3)^{2}\)
- \((\frac{2}{9})^{2}\)
- \((1\frac{2}{3})^{2}\)
- \(3^{3}\)
- \((−4)^{3}\)
- \((\frac{2}{5})^{3}\)
- \((−\frac{1}{6})^{3}\)
- \(−(−2)^{4}\)
- \(−(−1)^{5}\)
- \(\sqrt{49}\)
- \(\sqrt{225}\)
- \(2\sqrt{25}\)
- \(−\sqrt{121}\)
- \(3\sqrt{50}\)
- \(−4\sqrt{12}\)
- \(4\sqrt{9}\)
- \(8\sqrt{25}\)
- Calcular el área de un cuadrado con lados midiendo\(3\) centímetros. \((A=s^{2})\)
- Calcular el volumen de un cubo con lados midiendo\(3\) centímetros. \((V=s^{3})\)
- Determinar la longitud de la diagonal de un cuadrado con lados midiendo\(3\) centímetros.
- Determinar la longitud de la diagonal de un rectángulo con dimensiones\(2\) pulgadas por\(4\) pulgadas.
- Contestar
-
1. \(64\)
3. \(−16\)
5. \(\frac{4}{81}\)
7. \(27\)
9. \(\frac{81}{25}\)
11. \(−16\)
13. \(7\)
15. \(10\)
17. \(15\sqrt{2}\)
19. \(\frac{2}{3}\)
21. \(9\)centímetros cuadrados
23. \(3\sqrt{2}\)centímetros
Ejercicio\(\PageIndex{15}\) Order of Operations
Simplificar.
- \(−5(2)−7^{2}\)
- \(1−4^{2}+2(−3)^{2}\)
- \(2+3(6−2⋅4)^{3}\)
- \(5−3(8−3⋅4)^{2}\)
- \(−2^{3}+6(3^{2}−4)+(−3)^{2}\)
- \(5^{2}−40÷5(−2)^{2}−(−4)\)
- \(\frac{3}{4}[\frac{2}{9}(−3)^{2}−4]^{2}\)
- \((\frac{1}{2})^{2}−\frac{3}{4}÷\frac{9}{16}−\frac{1}{3}\)
- \(\frac{2−3(6−3^{2})^{2}}{4⋅5−5^{2}}\)
- \(\frac{(2⋅8−6^{2})^{2}−10}{273−(2(−5)^{3}−7) }\)
- \(8−5|3⋅4−(−2)^{4}|\)
- \(|14|-|−3−52|\)
- Contestar
-
1. \(-59\)
3. \(-22\)
5. \(31\)
7. \(3\)
9. \(5\)
11. \(-12\)
Ejercicio\(\PageIndex{16}\) Order of Operations
Encuentra la distancia entre los números dados en una recta numérica.
- \(−14\)y\(22\)
- \(−42\)y\(−2\)
- \(\frac{7}{8}\)y\(−\frac{1}{5}\)
- \(−5\frac{1}{2}\)y\(−1\frac{1}{4}\)
- Contestar
-
1. \(36\)unidades
3. \(\frac{43}{40}\)unidades
Examen de muestra
Ejercicio\(\PageIndex{17}\)
- Enumere tres enteros mayores que\(−10\).
- Determinar lo desconocido (es):\(| ? |=13\).
- Rellene el espacio en blanco con\(<,=,\text{ or }\):\(-|-100|\underline{\:\:}9^{2}\).
- Convertir a una fracción:\(33\frac{1}{3}\)%
- Convertir a un porcentaje:\(2\frac{3}{4}\).
- Reducir:\(\frac{75}{225}\).
- Contestar
-
1. \(\{−5, 0, 5\}\)(las respuestas pueden variar)
3. \(<\)
5. \(275\)%
Ejercicio\(\PageIndex{18}\)
Calcula lo siguiente.
- a.\((−7)^{2}\); b.\(−(−7)^{2}\); c.\(−7^{2}\)
- a.\((−3)^{3}\); b.\(−(−3)^{3}\); c.\(−3^{3}\)
- a.\(|10|\); b.\(−|−10|\); c.\(−|10|\)
- Contestar
-
1. a.\(49\); b.\(−49\); c.\(−49\)
3. a.\(10\); b.\(−10\); c.\(−10\)
Ejercicio\(\PageIndex{19}\)
Simplificar.
- \(−(−(−1))\)
- \(\frac{2}{3}+\frac{1}{5}−\frac{3}{10}\)
- \(10−(−12)+(−8)−20\)
- \(−8(4)(−3)÷2\)
- \(\frac{1}{2}⋅(−\frac{4}{5})÷\frac{14}{15}\)
- \(\frac{3}{5}⋅\frac{1}{2}−\frac{2}{3}\)
- \(4⋅5−20÷5⋅2\)
- \(10−7(3−8)−5^{2}\)
- \(3+2|−2^{2}−(−1)|+(−2)^{2}\)
- \(\frac{1}{3}[5^{2}−(7−|−2|)+15⋅2÷3]\)
- \(\sqrt{116}\)
- \(3\sqrt{72}\)
- Contestar
-
2. \(\frac{17}{30}\)
4. \(48\)
6. \(-\frac{11}{30}\)
8. \(20\)
10. \(10\)
12. \(18\sqrt{2}\)
Ejercicio\(\PageIndex{20}\)
- Restar\(2\) de la suma de\(8\) y\(−10\).
- Restar\(10\) del producto de\(8\) y\(−10\).
- Un estudiante gana\(9, 8, 10, 7,\) y\(8\) puntos en los primeros cuestionarios de\(5\) química. ¿Cuál es el promedio de su cuestionario?
- Un tablón de\(8\frac{3}{4}\) pie se corta en\(5\) trozos de igual longitud. ¿Cuál es la longitud de cada pieza?
- Contestar
-
2. \(-90\)
4. \(1\frac{3}{4}\)pies