5.2: Invarianza de Lorentz y multiplicación bilateral
- Page ID
- 110010
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Para matrices hermitianas:\(K^{\dagger} = K, \bar{K} = \tilde{K}\) y lo mismo para R. ¿Por qué multiplicación bilateral? Eliminar factores no físicos indicados como\(\underbrace{}\).
\[\begin{array}{c} {\begin{pmatrix} {e^{(\mu-i \phi)/2}}&{0}\\ {0}&{e^{-(\mu-i \phi)/2}} \end{pmatrix} \begin{pmatrix} {k_{0}+k_{3}}&{k_{1}-i k_{2}}\\ {k_{1}+i k_{2}}&{k_{2}-k_{3}} \end{pmatrix} =}\\ {\begin{pmatrix} {e^{\mu/2}(k_{0}+\mu_{3}) \underbrace{e^{-i \phi/2}}}&{\underbrace{e^{\mu/2}}(k_{1}-i k_{2}) e^{-i \phi/2}}\\ {\underbrace{e^{-\mu/2}}(k_{1}+i k_{2}) e^{-i \phi/2}}&{e^{\mu/2}(k_{0}-k_{3}) \underbrace{e^{i \phi/2}}} \end{pmatrix} \times}\\ {\begin{pmatrix} {k_{0}+k_{3}}&{k_{1}-ik_{2}}\\ {k_{1}+ik_{2}}&{k_{2}-k_{3}} \end{pmatrix} \begin{pmatrix} {e^{(\mu+i \phi)/2}}&{0}\\ {0}&{e^{-(\mu+i \phi)/2}} \end{pmatrix} =}\\ {\begin{pmatrix} {e^{\mu/2}(k_{0}+\mu_{3}) \underbrace{e^{i \phi/2}}}&{\underbrace{e^{-\mu/2}}(k_{1}-i k_{2}) e^{-i \phi/2}}\\ {\underbrace{e^{-\mu/2}}(k_{1}+i k_{2}) e^{i \phi/2}}&{e^{\mu/2}(k_{0}-k_{3}) \underbrace{e^{-i \phi/2}}} \end{pmatrix} \times}\\ {\begin{pmatrix} {e^{(\mu-i \phi)/2}}&{0}\\ {0}&{e^{-(\mu-i \phi)/2}} \end{pmatrix} \begin{pmatrix} {k_{0}+k_{3}}&{k_{1}-i k_{2}}\\ {k_{1}+i k_{2}}&{k_{2}-k_{3}} \end{pmatrix} \begin{pmatrix} {e^{(\mu+i \phi)/2}}&{0}\\ {0}&{e^{-(\mu+i \phi)/2}} \end{pmatrix} =}\\ {\begin{pmatrix} {e^{\mu/2}(k_{0}+\mu_{3})}&{e^{-i \phi/2} (k_{1}-i k_{2})}\\ {e^{i \phi/2} (k_{1}+i k_{2})}&{e^{\mu/2}(k_{0}-k_{3})} \end{pmatrix}} \end{array}\]
O bien, en forma de\(4 \times 4\) matriz:
\[\begin{array}{c} {\begin{pmatrix} {k_{1}'}\\ {k_{2}'}\\ {k_{3}'}\\ {k_{0}'} \end{pmatrix} = \begin{pmatrix} {\cos \phi}&{-\sin \phi}&{0}&{0}\\ {\sin \phi}&{\cos \phi}&{0}&{0}\\ {0}&{0}&{\cosh \mu}&{\sinh \mu}\\ {0}&{0}&{\sinh \mu}&{\cosh \mu} \end{pmatrix} \begin{pmatrix} {k_{1}'}\\ {k_{2}'}\\ {k_{3}'}\\ {k_{0}'} \end{pmatrix}} \end{array}\]
Rotación circular alrededor del eje z por\(\phi\) y rotación hiperbólica a lo largo del mismo asix por el ángulo ehiper bólico\(\mu\): Lorentz de cuatro tornillos:\(\mathcal{L}(\phi, \hat{z}, \mu)\). Estas transformaciones forman un grupo abeliano.
En el álgebra de Pauli se mantiene la simplicidad formal de estas relaciones incluso para direcciones axiales arbitrarias. Sin duda, la obtención de resultados explícitos de los productos bilaterales puede llegar a ser algo más cumber. Sin embargo, los resultados vectoriales estándar se pueden extraer fácilmente.