Saltar al contenido principal
LibreTexts Español

8.6: Preguntas de lectura

  • Page ID
    111124
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    1

    Supongamos que un código binario tiene distancia mínima\(d=6\text{.}\) ¿Cuántos errores se pueden detectar? ¿Cuántos errores se pueden corregir?

    2

    Explica por qué es imposible que la cadena de 8 bits con valor decimal\(56_{10}\) sea un código ASCII para un carácter. Supongamos que el bit más a la izquierda de la cadena se está utilizando como un bit de verificación de paridad.

    3

    Supongamos que recibimos la cadena de 8 bits con valor decimal\(56_{10}\) cuando estamos esperando caracteres ASCII con un bit de comprobación de paridad en el primer bit (más a la izquierda). Sabemos que se ha producido un error en la transmisión. Dar una de las conjeturas probables para el personaje que realmente fue enviado (distinto de '8'), bajo el supuesto de que cualquier bit individual rara vez se envía por error. Explica la lógica de tu respuesta. (Es posible que deba consultar una tabla de valores ASCII en línea.)

    4

    Supongamos que\(C\) se crea un código lineal como el espacio nulo de la matriz de comprobación de paridad

    \[ H=\left[\begin{array}{lllll} 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \end{array}\right] \nonumber \]

    Entonces no\(x=11100\) es una palabra clave. Describir un cálculo, y dar el resultado de ese cálculo, lo que verifica que no\(x\) es una palabra clave del código\(C\text{.}\)

    5

    Para\(H\) y\(x\) como en la pregunta anterior, supongamos que\(x\) se recibe como mensaje. Dar una decodificación de máxima verosimilitud del mensaje recibido.


    This page titled 8.6: Preguntas de lectura is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by Thomas W. Judson (Abstract Algebra: Theory and Applications) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.