Saltar al contenido principal
LibreTexts Español

19.2: Resolviendo problemas propios - Un ejemplo 2x2

  • Page ID
    115258
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)
    from urllib.request import urlretrieve
    
    urlretrieve('https://raw.githubusercontent.com/colbrydi/jupytercheck/master/answercheck.py', 
                'answercheck.py');
    from IPython.display import YouTubeVideo
    YouTubeVideo("0UbkMlTu1vo",width=640,height=360, cc_load_policy=True)

    Considera calcular valores propios para cualquier\(2 \times 2\) matriz. Queremos resolver:

    \[|A - \lambda I_2 | = 0 \nonumber \]

    \ [\ begin {split}
    \ izquierda|
    \ left [
    \ begin {matrix}
    a_ {11} & a_ {12}\\
    a_ {21} & a_ {22}
    \ end {matrix}
    \ right]
    -\ lambda\ left [
    \ begin {matrix}
    1 & 0\\
    0 & 1
    \ end {matriz}
    \ derecha]
    \ derecha|
    =
    \ izquierda|
    \ izquierda [
    \ begin {matriz}
    a_ {11} -\ lambda & a_ {12}\\
    a_ {21} & a_ {22} -\ lambda
    \ end {matriz}
    \ derecha]
    \ derecha|
    =0
    \ end {split}\ nonumber\]

    Conocemos este determinante:

    \[(a_{11}-\lambda)(a_{22}-\lambda) - a_{12} a_{21} = 0 \nonumber \]

    Si ampliamos lo anterior, obtenemos:

    \[a_{11}a_{22}+\lambda^2-a_{11}\lambda-a_{22}\lambda - a_{12} a_{21} = 0 \nonumber \]

    y

    \[\lambda^2-(a_{11}+a_{22})\lambda+a_{11}a_{22} - a_{12} a_{21} = 0 \nonumber \]

    Esta es una ecuación cuadrática simple. Las raíces de se\(A\lambda^2 + B\lambda + C = 0 \) pueden resolver usando la fórmula cuadrática:

    \[ \frac{-B \pm \sqrt{B^2 - 4AC}}{2A} \nonumber \]

    Pregunta

    Usando la ecuación anterior. Cuáles son los valores propios para la siguiente\(2 \times 2\) matriz. Intente calcular esto a mano y luego almacene el valor inferior en una variable llamada e1 y el valor mayor en e2 para verificar su respuesta:

    \ [\ begin {split} A =
    \ left [
    \ begin {matrix}
    -4 & -6\\
    3 & 5
    \ end {matrix}
    \ right]
    \ end {split}\ nonumber\]

    # Put your answer here
    from answercheck import checkanswer
    
    checkanswer.float(e1,'c54490d3480079138c8c027a87a366e3');
    from answercheck import checkanswer
    
    checkanswer.float(e2,'d1bd83a33f1a841ab7fda32449746cc4');
    Hacer esto

    Encuentra una función numpy que calculará los valores propios y verificará las respuestas desde arriba.

    # Put your answer here
    Pregunta

    ¿Cuáles son los vectores propios correspondientes a la matriz\(A\)? Esta vez puedes intentar calcular a mano o simplemente usar la función que encontraste en la respuesta anterior. Almacene el vector propio asociado con el valor e1 en un vector llamado v1 y el vector propio asociado con el valor propio e2 en un vector llamado v2 para verificar su respuesta.

    # Put your answer here
    from answercheck import checkanswer
    
    checkanswer.eq_vector(v1,'35758bc2fa8ff4f04cfbcd019844f93d');
    from answercheck import checkanswer
    
    checkanswer.eq_vector(v2,'90b0437e86d2cf70050d1d6081d942f4');
    Pregunta

    Tanto sympy como numpy pueden calcular muchas de las mismas cosas. ¿Cuál es la diferencia fundamental entre estas dos bibliotecas?


    This page titled 19.2: Resolviendo problemas propios - Un ejemplo 2x2 is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Dirk Colbry via source content that was edited to the style and standards of the LibreTexts platform.