Saltar al contenido principal
LibreTexts Español

40.1: Sistemas lineales

  • Page ID
    115417
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    En este curso, aprendimos a representar sistemas lineales que básicamente consisten en ecuaciones sumadas de múltiples números en la forma:

    \[b = a_1x_1+a_2x_2+a_3x_3 + \ldots a_mx_m \nonumber \]

    Los sistemas de ecuaciones lineales son múltiples ecuaciones de la forma anterior con básicamente las mismas incógnitas pero diferentes valores de\(a\) y\(b\).

    \[b_1 = a_{11}x_1+a_{12}x_2+a_{13}x_3 + \ldots a_{1n}x_n \nonumber \]

    \[b_2 = a_{21}x_1+a_{22}x_2+a_{23}x_3 + \ldots a_{2n}x_n \nonumber \]

    \[b_3 = a_{31}x_1+a_{32}x_2+a_{33}x_3 + \ldots a_{3n}x_n \nonumber \]

    \[\vdots \nonumber \]

    \[b_m = a_{m1}x_1+a_{m2}x_2+a_{m3}x_3 + \ldots a_{mn}x_n \nonumber \]

    Las ecuaciones anteriores se pueden representar en forma de matriz de la siguiente manera:

    \ [\ begin {split}
    \ left [
    \ begin {matrix}
    b_1\\
    b_2\\
    b_3\\
    \ vdots\\
    b_m
    \ end {matrix}
    \ right]
    =
    \ left [
    \ comenzar {matriz}
    a_ {11} & a_ {12} & a_ {13} & a_ {1n}\\
    a_ {21} & a_ {22} & a_ {23} &\ ldots & a_ {2n}\\
    a_ {31} & a_ {32} & a_ {33} & a_ {3n}\\
    & vdots &\ ddots &\ vdots\\
    a_ {m1} & a_ {m2} & a_ {m3} & a_ {mn}
    \ final {matriz}
    \ derecha]
    \ izquierda [
    \ comenzar {matriz}
    x_1\
    x_2\\
    x_3\
    \ vdots\\
    x_n
    \ end {matriz}
    \ derecha]
    \ end {split}\ nonumber\]

    Que también se puede representar en forma “aumentada” de la siguiente manera:

    \ [\ begin {split}
    \ left [
    \ begin {matrix}
    a_ {11} & a_ {12} & a_ {13} & a_ {1n}\\ a_ {21} &
    a_ {22} & a_ {23} &\ ldots & a_ {2n}\\ a_ {31} &
    a_ {32} & a_ {33} & a_ {33} y a_ {33} & a_ {3n}\\
    &\ vdots & &\ ddots &\ vdots\\
    a_ {m1} & a_ {m2} & a_ {m3} & a_ {mn}
    \ end {matrix}
    \,\ middle\ vert\,
    \ begin {matriz}
    b_1\\
    b_2\\
    b_3\\
    \ vdots\\
    b_m
    \ end {matrix}
    \ right]
    \ end {split}\ nonumber\]

    Los sistemas anteriores se pueden modificar en sistemas equivelentes usando combinaciones de los siguientes operadores.

    1. Multiplicar cualquier fila de una matriz por una constante
    2. Agrega el contenido de una fila por otra fila.
    3. Intercambiar dos filas cualesquiera.

    A menudo, el operador primero y segundo se pueden combinar donde una fila se multiplica por una constanet y luego se agrega (o resta) de otra fila.

    Pregunta

    Considera la matriz\(A= \left[\begin{matrix} 1 & 3 \\ 0 & 2 \end{matrix}\right]\). ¿Qué operadores puedes usar para poner la ecuación anterior en su forma de escalón de fila reducida?


    This page titled 40.1: Sistemas lineales is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Dirk Colbry via source content that was edited to the style and standards of the LibreTexts platform.