1.2.1: Ejercicios 1.2
- Page ID
- 116451
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)En Ejercicios\(\PageIndex{1}\) -\(\PageIndex{4}\), convertir el sistema dado de ecuaciones lineales en una matriz aumentada.
\(\begin{array}{ccccccc} 3x&+&4y&+&5z&=&7\\ -x&+&y&-&3z&=&1\\ 2x&-&2y&+&3z&=&5\\ \end{array}\)
- Contestar
-
\(\left[\begin{array}{cccc} 3&4&5&7\\-1&1&-3&1\\2&-2&3&5\\ \end{array}\right]\)
\(\begin{array}{ccccccc} 2x&+&5y&-&6z&=&2\\ 9x&&&-&8z&=&10\\ -2x&+&4y&+&z&=&-7\\ \end{array}\)
- Contestar
-
\(\left[\begin{array}{cccc} 2&5&-6&2\\9&0&-8&10\\-2&4&1&-7\\ \end{array}\right]\)
\(\begin{array}{rl} x_1 +3x_2-4x_3 + 5x_4 =&17 \\ -x_1+4x_3+8x_4 =&1\\ 2x_1+3x_2+4x_3+5x_4=&6 \end{array}\)
- Contestar
-
\(\left[\begin{array}{ccccc} 1&3&-4&5&17\\-1&0&4&8&1\\ 2&3&4&5&6\end{array}\right] \)
\(\begin{array}{rl} 3x_1 -2x_2=&4 \\ 2x_1 =&3\\ -x_1+9x_2=&8\\ 5x_1-7x_2=&13\\ \end{array}\)
- Contestar
-
\(\left[\begin{array}{ccc} 3&-2&4\\ 2&0&3\\-1&9&8\\5&-7&13\\ \end{array}\right]\)
En Ejercicios\(\PageIndex{5}\) -\(\PageIndex{9}\), convertir la matriz aumentada dada en un sistema de ecuaciones lineales. Utilice las variables\(x_{1},\: x_{2}\), etc.
\(\left[\begin{array}{ccc} 1&2&3\\ -1&3&9\\ \end{array}\right]\)
- Contestar
-
\(\begin{array}{rl} x_1+2x_2=&3\\ -x_1+3x_2=&9\\ \end{array}\)
\(\left[\begin{array}{ccc} -3&4&7\\ 0&1&-2\\ \end{array}\right]\)
- Contestar
-
\(\begin{array}{rl} -3x_1+4x_2=&7\\ x_2=&-2\\ \end{array}\)
\(\left[\begin{array}{ccccc} 1&1&-1&-1&2\\ 2&1&3&5&7\\ \end{array}\right]\)
- Contestar
-
\(\begin{array}{rl} x_1+x_2-x_3-x_4=&2\\ 2x_1+x_2+3x_3+5x_4=&7\\ \end{array}\)
\(\left[\begin{array}{ccccc} 1&0&0&0&2\\ 0&1&0&0&-1\\ 0&0&1&0&5\\ 0&0&0&1&3 \end{array}\right]\)
- Contestar
-
\(\begin{array}{rl} x_1=&2\\ x_2=&-1\\ x_3=&5\\ x_4=&3\\ \end{array}\)
\(\left[\begin{array}{cccccc} 1&0&1&0&7&2\\ 0&1&3&2&0&5\\ \end{array}\right]\)
- Contestar
-
\(\begin{array}{rl} x_1+x_3+7x_5=&2\\ x_2+3x_3+2x_4=&5\\ \end{array}\)
En Ejercicios\(\PageIndex{10}\) -\(\PageIndex{15}\), realizar las operaciones de fila dadas en\(A\), donde
\[A=\left[\begin{array}{ccc}{2}&{-1}&{7}\\{0}&{4}&{-2}\\{5}&{0}&{3}\end{array}\right]\nonumber \]
\(-1R_1\rightarrow R_1\)
- Contestar
-
\(\left[\begin{array}{ccc} -2&1&-7\\0&4&-2\\5&0&3\\ \end{array}\right]\)
\(R_2\leftrightarrow R_3\)
- Contestar
-
\(\left[\begin{array}{ccc} 2&-1&7\\5&0&3\\0&4&-2\\ \end{array}\right]\)
\(R_1+R_2\rightarrow R_2\)
- Contestar
-
\(\left[\begin{array}{ccc} 2&-1&7\\2&3&5\\5&0&3\\ \end{array}\right]\)
\(2R_2+R_3\rightarrow R_3\)
- Contestar
-
\(\left[\begin{array}{ccc} 2&-1&7\\0&4&-2\\5&8&-1\\ \end{array}\right]\)
\(\frac12R_2\rightarrow R_2\)
- Contestar
-
\(\left[\begin{array}{ccc} 2&-1&7\\0&2&-1\\5&0&3\\ \end{array}\right]\)
\(-\frac52R_1+R_3\rightarrow R_3\)
- Contestar
-
\(\left[\begin{array}{ccc} 2&-1&7\\0&4&-2\\0&5/2&-29/2\\ \end{array}\right]\)
A continuación\(A\) se da una matriz. En Ejercicios\(\PageIndex{16}\) -\(\PageIndex{20}\),\(B\) se da una matriz. Dar la operación de fila que se\(A\) transforma en\(B\).
\[A=\left[\begin{array}{ccc}{1}&{1}&{1}\\{1}&{0}&{1}\\{1}&{2}&{3}\end{array}\right]\nonumber \]
\(B = \left[\begin{array}{ccc}1&1&1\\2&0&2\\1&2&3\\ \end{array}\right]\)
- Contestar
-
\(2R_2\rightarrow R_2\)
\(B = \left[\begin{array}{ccc}1&1&1\\2&1&2\\1&2&3\\ \end{array}\right]\)
- Contestar
-
\(R_1+R_2\rightarrow R_2\)
\(B = \left[\begin{array}{ccc}3&5&7\\1&0&1\\1&2&3\\ \end{array}\right]\)
- Contestar
-
\(2R_3+R_1\rightarrow R_1\)
\(B= \left[\begin{array}{ccc}1&0&1\\1&1&1\\1&2&3\\ \end{array}\right]\)
- Contestar
-
\(R_1\leftrightarrow R_2\)
\(B= \left[\begin{array}{ccc}1&1&1\\1&0&1\\0&2&2\\ \end{array}\right]\)
- Contestar
-
\(-R_2+R_3\leftrightarrow R_3\)
En Ejercicios\(\PageIndex{21}\) -\(\PageIndex{26}\), reescribir el sistema de ecuaciones en forma de matriz. Encuentre la solución al sistema lineal manipulando simultáneamente las ecuaciones y la matriz.
\(\begin{array}{ccccc} x&+&y&=&3\\ 2x&-&3y&=&1\\ \end{array}\)
- Contestar
-
\(x=2,y=1\)
\(\begin{array}{ccccc} 2x&+&4y&=&10\\ -x&+&y&=&4\\ \end{array}\)
- Contestar
-
\(x=-1,y=3\)
\(\begin{array}{ccccc} -2x&+&3y&=&2\\ -x&+&y&=&1\\ \end{array}\)
- Contestar
-
\(x=-1,y=0\)
\(\begin{array}{ccccccc} 2x&+&3y&=&2\\ -2x&+&6y&=&1\\ \end{array}\)
- Contestar
-
\(x=\frac12,y=\frac13\)
\(\begin{array}{ccccccc} -5x_1&&&+&2x_3&=&14\\ &&x_2&&&=&1\\ -3x_1&&&+&x_3&=&8\\ \end{array}\)
- Contestar
-
\(x_1=-2,x_2=1,x_3=2\)
\(\begin{array}{ccccccc} &-&5x_2&+&2x_3&=&-11\\ x_1&&&+&2x_3&=&15\\ &-&3x_2&+&x_3&=&-8\\ \end{array}\)
- Contestar
-
\(x_1=1,x_2=5,x_3=7\)