Saltar al contenido principal
LibreTexts Español

11.6: Descomposición polar

  • Page ID
    114992
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    {{Template.dropdown {ruta:” /álgebra/linear_álgebra "}}}

    Continuando con la analogía entre\(\mathbb{C}\) y\(\mathcal{L}(V)\), recordar la forma polar de un número complejo\(z=|z|e^{i\theta}\), donde\(|z|\) está el valor absoluto o módulo de\(z\) y\(e^{i\theta}\) se encuentra en el círculo unitario en\(\mathbb{R}^{2}\). En términos de un operador\(T\in \mathcal{L}(V)\), donde\(V\) hay un espacio interno complejo de productos, un operador unitario\(U\) toma el papel de\(e^{i\theta}\), y\(|T|\) toma el papel del módulo. Al igual que en la Sección 11.5,\(T^*T\ge 0\) así que eso\( |T|:=\sqrt{T^*T}\) existe y satisface\(|T|\ge 0\) también.

    Teorema 11.6.1. Para cada uno\(T\in \mathcal{L}(V)\), existe una unidad\(U\) tal que

    \[ T = U |T|. \]

    A esto se le llama la descomposición polar de\(T\).

    Comprobante. Comenzamos por señalar que

    \[ \norm{Tv}^2 = \norm{\,|T|\,v}^2, \]

    ya que\(\inner{Tv}{Tv} = \inner{v}{T^*Tv} = \inner{\sqrt{T^*T}v}{\sqrt{T^*T}v}\). Esto implica que\(\kernel(T) = \kernel(|T|)\). By the Dimension Formula, this also means that\(\dim(\range(T)) = \dim(\range(|T|))\). Además, podemos definir una isometría\(S: \range(|T|) \to \range(T)\) configurando

    \[ S( |T|v) = Tv. \]

    El truco es ahora definir un operador unitario\(U\) en todos los de\(V\) tal manera que la restricción de\(U\) en el rango de\(|T|\) es\(S\), es decir,
    \[ U|_{\range(|T|)} = S. \]

    Tenga en cuenta que\(\kernel(|T|) \bot \range(|T|)\), es decir, para\(v\in \kernel(|T|)\) y\(w=|T|u \in \range(|T|)\),

    \[ \inner{w}{v} = \inner{|T|u}{v} = \inner{u}{|T|v} = \inner{u}{0} = 0 \]

    desde\(|T|\) is self-adjoint.

    Escoger una base ortonormal\(e=(e_1,\ldots,e_m)\) de base\(\kernel(|T|)\) and an ortonormal\(f=(f_1,\ldots,f_m)\) de\((\range(T))^\bot\). Set \(\tilde{S} e_i = f_i\), and extend \(\tilde{S}\) to all of \(\kernel(|T|)\) by linearity. Since \(\kernel(|T|)\bot \range(|T|)\), any \(v\in V\) can be uniquely written as \(v=v_1+v_2\), where \(v_1\in \kernel(|T|)\) and \(v_2\in \range(|T|)\). Now define \(U:V\to V\) by setting \(Uv = \tilde{S} v_1 + S v_2\). Después la\(U\) is an isometría. Por otra parte, aplicación de\(U\) is also unitary, as shown by the following cálculo del teorema de Pitágoras:

    \ begin {ecuación*}
    \ comenzar {dividir}
    \ norma {Uv} ^2 &=\ norma {\ tilde {S} v_1 + S v_2} ^2 =\ norma {\ tilde {S} v_1} ^2 +\ norma {S v_2} ^2\\
    &=\ norma {v_1} ^2 +\ norma {v_2} ^2 =\ norma {v} ^2.
    \ end {split}
    \ end {ecuación*}

    También, tenga en cuenta que\(U|T|=T\) by construction since \(U|_{\kernel(|T|)}\) is irrelevant.

    Template:Shilling


    This page titled 11.6: Descomposición polar is shared under a not declared license and was authored, remixed, and/or curated by Isaiah Lankham, Bruno Nachtergaele, & Anne Schilling.