8.1: Introducción al problema del valor propio
- Page ID
- 113065
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Introducción
Volviendo a nuestra discusión anterior sobre La transformación de Laplace, etiquetamos al número complejo como\(\lambda\) un valor propio de\(B\) si no\(\lambda I-B\) era invertible. Para encontrar tal\(\lambda\) sólo hay que encontrar aquellos\(s\) para los que no\((sI-B)^{-1}\) está definido. Para tomar un ejemplo concreto observamos que si
\[B = \begin{pmatrix} {1}&{0}&{0}\\ {1}&{1}&{0}\\ {0}&{0}&{2} \end{pmatrix} \nonumber\]
entonces
\[(sI-B)^{-1} = \frac{1}{(s-1)^{2} (s-2)} \begin{pmatrix} {(s-1)(s-2)}&{s-2}&{0}\\ {0}&{(s-1)(s-2)}&{0}\\ {0}&{0}&{(s-1)^2} \end{pmatrix} \nonumber\]
y así\(\lambda_{1} = 1\) y\(\lambda_{2} = 2\) son los dos valores propios de\(B\). Ahora bien, decir que no\(\lambda_{j}I-B\) es invertible es decir que sus columnas son linealmente dependientes, o, equivalentemente, que el espacio nulo\(\mathscr{N} (\lambda_{j}I-B)\) contiene más que solo el vector cero. Llamamos\(\mathscr{N} (\lambda_{j}I-B)\) al jésimo espacio propio y llamamos a cada uno de sus miembros distintos de cero un jésimo vector propio. La dimensión de\(\mathscr{N} (\lambda_{j}I-B)\) se conoce como la multiplicidad geométrica de\(\lambda_{j}\). Con respecto a\(B\) lo anterior, calculamos\(\mathscr{N} (\lambda_{j}I-B)\) resolviendo\((I-B)x = 0\) i.e.
\[\begin{pmatrix} {0}&{-1}&{0}\\ {0}&{0}&{0}\\ {0}&{0}&{1} \end{pmatrix} \begin{pmatrix} {x_{1}}\\ {x_{2}}\\ {x_{3}} \end{pmatrix} = \begin{pmatrix} {0}\\ {0}\\ {0} \end{pmatrix} \nonumber\]
Claramente,
\[\mathscr{N} (\lambda_{1}I-B) = \{c \begin{pmatrix} {1}&{0}&{0} \end{pmatrix}^{T} | c \in \mathbb{R}\} \nonumber\]
Discutiendo en la misma línea también encontramos
\[\mathscr{N} (\lambda_{2}I-B) = \{c \begin{pmatrix} {0}&{0}&{1} \end{pmatrix}^{T} | c \in \mathbb{R}\} \nonumber\]
Eso\(B\) es\(3 \times 3\) pero posee solo 2 vectores propios linealmente nos lleva a hablar de\(B\) defectuosos. La causa de su defecto es muy probablemente el hecho de que\(\lambda_{1}\) es un doble polo de\((sI-B)^{-1}\). Para concretar ese comentario y descubrir el autovector faltante debemos echar un vistazo mucho más de cerca a la función de transferencia
\[R(s) \equiv (sI-B)^{-1} \nonumber\]
En la literatura matemática esta cantidad se conoce típicamente como el Resolvent de\(B\).