3.12.E: Problemas en Puntos de Cluster, Conjuntos Cerrados y Densidad
- Page ID
- 113884
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Completar la prueba del Teorema 1\((\text { ii })\).
Demostrar eso\(\overline{R}=E^{1}\) y\(\overline{R^{n}}=E^{n}(\text { Example }(\mathrm{a}))\).
Demostrar Teorema 2 para\(E^{3} .\) Demostrarlo\(E^{n}\left(^{*} \text { and } C^{n}\right)\) por inducción en\(n .\)
Verificar Nota 2.
Demostrar Teorema 3.
Probar Corolarios 1 y 2.
\((A \cup B)^{\prime}=A^{\prime} \cup B^{\prime}\)Demuéstralo.
[Pista: Mostrar por contradicción que\(p \notin\left(A^{\prime} \cup B^{\prime}\right)\) excluye\(p \in(A \cup B)^{\prime} .\) De ahí\((A \cup B)^{\prime} \subseteq A^{\prime} \cup B^{\prime} .\) Entonces mostrar eso\(A^{\prime} \subseteq(A \cup B)^{\prime},\) etc.\(]\)
De Problema\(7,\) deducir que\(A \cup B\) está cerrado si\(A\) y\(B\) son. Entonces probar Corolario\(4 .\) Por inducción, extender ambas aserciones a cualquier número finito de conjuntos.
Del Teorema\(4,\) demostrar que si los conjuntos\(A_{i}(i \in I)\) están cerrados, así es\(\bigcap_{i \in I} A_{i}\).
Probar Corolario 3 del Teorema 3. Deducir eso\(\overline{\overline{A}}=\overline{A}\) y probar nota al pie\(3 .\)
[Pista: Considere la Figura 7 y el Ejemplo\((1)\) en §12 al usar el Teorema 3 (dos veces). \(]\)
Demostrar que\(\overline{A}\) está contenido en cualquier superconjunto cerrado de\(A\) y es la intersección de todos esos superconjuntos.
[Pista: Usar Corolarios 2 y\(3 . ]\)
(i) Demostrar que una secuencia acotada\(\left\{\overline{x}_{m}\right\} \subseteq E^{n}\left(^{*} C^{n}\right)\) converge a\(\overline{p}\) iff\(\overline{p}\) es su único punto de agrupación.
ii) La desmentir por
(a) espacios no acotados\(\left\{\overline{x}_{m}\right\}\) y
b) otros.
[Pista: Porque\((\mathrm{i}),\) si\(\overline{x}_{m} \rightarrow \overline{p}\) falla, algunos\(G_{\overline{p}}\) dejan fuera infinitamente muchos\(\overline{x}_{m} .\) Estos\(\overline{x}_{m}\) forman una subsecuencia acotada que, por teorema\(2,\) agrupa en algunos\(\overline{q} \neq \overline{p} .\) (¿Por qué? \()\)Así\(\overline{q}\) es otro punto de cúmulo (¡contradicción!)
Para (ii) considerar (a) Ejemplo (f) en §14 y (b) Problema 10 en §14, con (0,2] como subespacio de\(E^{1} . ]\)
En cada caso del Problema 10 en §14, encuentra\(\overline{A}\). ¿Está\(A\) cerrado? (Usar Teorema 4.)
Demostrar que si\(\left\{b_{n}\right\} \subseteq B \subseteq \overline{A}\) en\((S, \rho),\) hay una secuencia\(\left\{a_{n}\right\} \subseteq A\) tal que\(\rho\left(a_{n}, b_{n}\right) \rightarrow 0 .\) Por lo tanto\(a_{n} \rightarrow p\) iff\(b_{n} \rightarrow p .\)
[Pista: Elegir\(a_{n} \in G_{b_{n}}(1 / n) .]\)
Tenemos, por definición,
\ [
p\ en A^ {0}\ text {iff} (\ existe\ delta>0) G_ {p} (\ delta)\ subseteq A;
\]
por lo tanto
\ [
p\ notin A^ {0}\ text {iff} (\ forall\ delta>0) G_ {p} (\ delta)\ nsubseteq A,\ text {es decir,} G_ {p} (\ delta) -A\ neq\ vaciado.
\]
(Ver Capítulo\(1,§§1-3 . )\) Encontrar tales fórmulas cuantificadoras para\(p \in \overline{A}, p \notin \overline{A}\),\(p \in A^{\prime},\) y\(p \notin A^{\prime}\).
[Pista: Usar Corolario 6 en\(§ 14,\) y Teorema 3 en\(§16 .]\)
Utilice el Problema 15 para probar que
(i)\(-(\overline{A})=(-A)^{0}\) y
(ii)\(-\left(A^{0}\right)=\overline{-A}\).
Mostrar que
\ [
\ overline {A}\ cap (\ overline {-A}) =\ mathrm {bd} A (\ text {límite de} A);
\]
cf.\(§ 12,\) Problema\(18 .\) De ahí probar de nuevo que\(A\) está cerrado iff\(A \supseteq\) bd\(A .\)
[Pista: Usar Teorema 4 y Problema 16 arriba. \(]\)
Se dice que un set no\(A\) es denso en ningún lado en\((S, \rho)\) iff\((\overline{A})^{0}=\emptyset .\) Show que el set de Cantor no\(P(§14, \text { Problem } 17)\) es denso en ninguna parte.
\([\text { Hint: } P \text { is closed, so } \overline{P}=P .]\)
Dar otra prueba de Teorema 2 para\(E^{1}\).
[Pista: Let\(A \subseteq[a, b] .\) Put
\ [
Q=\ {x\ in [a, b] | x\ text {excede infinitamente muchos puntos (o términos) de} A\}.
\]
Mostrar que\(Q\) está acotado y no vacío, así que tiene un glb, digamos,\(p=\inf A .\) Mostrar que\(A\) los clústeres en\(p . ]\)
Para cualquier conjunto\(A \subseteq(S, \rho)\) define
\ [
G_ {A} (\ varepsilon) =\ bigcup_ {x\ in A} G_ {x} (\ varepsilon).
\]
Demostrar que
\ [\ overline {A} =\ bigcap_ {n=1} ^ {\ infty} G_ {A}\ left (\ frac {1} {n}\ right).
\]
Demostrar que
\ [\ overline {A} =\ {x\ in S |\ rho (x, A) =0\};\ text {see}\ $13,\ text {Nota} 3.
\]
De ahí deducir que un set\(A\) in\((S, \rho)\) está cerrado iff
\((\forall x \in S) \quad \rho(x, A)=0 \Longrightarrow x \in A\).