Saltar al contenido principal
LibreTexts Español

5.1.E: Problemas en Funciones Derivadas en una Variable

  • Page ID
    114009
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Ejercicio\(\PageIndex{1}\)

    Demostrar teoremas 4\(\left(i^{*}\right)\) e\(5,\) incluyendo y\(\left(i i^{*}\right) .\) Hazlo para productos dot también.

    Ejercicio\(\PageIndex{2}\)

    Verificar Nota 2.

    Ejercicio\(\PageIndex{3}\)

    Verificar Ejemplo (a).

    Ejercicio\(\PageIndex{3'}\)

    Verificar Ejemplo (b).

    Ejercicio\(\PageIndex{4}\)

    Demostrar que si\(f\) tiene derivados finitos de un solo lado en\(p,\) él es continuo en\(p\).

    Ejercicio\(\PageIndex{5}\)

    Reafirmar y probar los teoremas 2 y 3 para derivados unilaterales.

    Ejercicio\(\PageIndex{6}\)

    Demostrar que si las funciones\(f_{i} : E^{1} \rightarrow E^{*}(C)\) son diferenciables en\(p,\) lo que es su producto, y
    \ [
    \ left (f_ {1} f_ {2}\ cdots f_ {m}\ right) ^ {\ prime} =\ sum_ {i=1} ^ {m}\ left (f_ {1} f_ {2}\ cdots f_ {i-1} f_ {i} ^ {\ prime} f_ {i-1} f_ {i} ^ {\ prime} f_ {i_ +1}\ cdots f_ {m}\ derecha)\ texto {at} p.
    \]

    Ejercicio\(\PageIndex{7}\)

    \(f : E^{1} \rightarrow E\)Se dice que una función satisface una condición de orden\((L)\) de Lipschitz\(\alpha(\alpha>0)\) en\(p\) iff
    \ [
    (\ exists\ delta>0)\ left (\ exists K\ in E^ {1}\ right)\ left (\ forall x\ in G_ {\ neg p} (\ delta)\ right)\ quad|f (x) -f (p) |\ leq K|x-P|^ {\ alpha}.
    \]
    (i) Esto implica continuidad en\(p\) pero no a la inversa; take
    \ [
    f (x) =\ frac {1} {\ ln |x|},\ quad f (0) =0,\ quad p=0.
    \]
    \(\text { [Hint: For the converse, start with Problem } 14 \text { (iii) of Chapter } 4, §2 .]\)
    (ii)\(L\) de orden\(\alpha>1\) implica diferenciabilidad en\(p,\) con\(f^{\prime}(p)=0\).
    (iii) La diferenciabilidad implica\(L\) de orden\(1,\) pero no a la inversa. (Toma
    \ [
    f (x) =x\ sin\ frac {1} {x}, f (0) =0, p=0;
    \]
    entonces incluso las derivadas unilaterales no logran existir.)

    Ejercicio\(\PageIndex{8}\)

    Dejar
    \ [
    f (x) =\ sin x\ texto {y} g (x) =\ cos x.
    \]
    Mostrar eso\(f\) y\(g\) son diferenciables\(E^{1},\) con
    \ [
    f^ {\ prime} (p) =\ cos p\ text {y} g^ {\ prime} (p) =-\ sin p\ text {para cada} p\ en E^ {1}.
    \]
    De ahí probar para\(n=0,1,2, \ldots\) eso
    \ [
    f^ {(n)} (p) =\ sin\ left (p+\ frac {n\ pi} {2}\ right)\ text {y} g^ {(n)} (p) =\ cos\ left (p+\ frac {n\ pi} {2}\ right).
    \]
    [Pista: Evaluar\(\Delta f\) como en el Ejemplo (d) del Capítulo\(4, §8 .\) Luego use la continuidad de\(f\) y la fórmula

    \ [\ lim _ {z\ rightarrow 0}\ frac {\ sin z} {z} =\ lim _ {z\ rightarrow 0}\ frac {z} {\ sin z} =1.
    \]
    Para probar esto último, tenga en cuenta que
    \ [
    |\ sin z|\ leq|z|\ leq|\ tan z|,
    \] de
    donde
    \ [
    1\ leq\ frac {z} {\ sin z}\ leq\ frac {1} {|\ cos z|}\ fila derecha 1;
    \]
    de manera similar para\(g\).]

    Ejercicio\(\PageIndex{9}\)

    Demostrar que si\(f\) es diferenciable en\(p\) entonces

    \ [\ lim _ {x\ fila derecha p^ {+}\ arriba y\ fila derecha p^ {-}}\ frac {f (x) -f (y)} {x-y}\ text {existe, es finito, y es igual a} f^ {\ prime} (p);
    \]
    es decir,\((\forall \varepsilon>0)(\exists \delta>0)(\forall x \in(p, p+\delta))(\forall y \in(p-\delta, p))\)
    \ [
    \ izquierda|\ frac {f (x) -f (y)} {x-y} -f^ {\ prime} (p)\ derecha|<\ varepsilon.
    \]
    Mostrar, redefiniendo\(f\) en\(p,\) eso aunque exista el límite,\(f\) puede no ser\(\text { differentiable (note that the above limit does not involve } f(p)) .\)
    [Pista: Si\(y<p<x\) entonces
    \ [
    \ begin {aligned}\ left|\ frac {f (x) -f (y)} {x-y} -f^ {\ prime} (p)\ derecha| &\ leq\ izquierda|\ frac {f (x) -f (p)} {x-y} -\ frac {x-p} {x-y} f^ {\ prime} (p)\ derecha|+\ izquierda|\ frac {f (p) -f (y)} {x-y} -\ frac {p-y} {x-y} f^ {\ prime} (p)\ derecha|\\ &\ izquierda. \ leq\ izquierda|\ frac {f (x) -f (p)} {x-p} -f^ {\ prime} (p)\ derecha|+\ izquierda|\ frac {f (p) -f (y)} {p-y} -f^ {\ prime} (p)\ derecha|\ fila derecha 0. \ derecha]\ final {alineado}
    \]

    Ejercicio\(\PageIndex{10}\)

    Demostrar que si\(f\) es dos veces diferenciable en\(p,\) entonces
    \ [
    f^ {\ prime\ prime} (x) =\ lim _ {h\ rightarrow 0}\ frac {f (p+h) -2 f (p) +f (p-h)} {h^ {2}}\ neq\ pm\ infty.
    \]
    ¿Se sostiene lo contrario (cf. Problema 9)?

    Ejercicio\(\PageIndex{11}\)

    En Ejemplo\((\mathrm{c}),\) encuentre las tres ecuaciones de coordenadas de la línea tangente en\(p=\frac{1}{2} \pi .\)

    Ejercicio\(\PageIndex{12}\)

    A juzgar por la Figura 22 en §2, discutir la existencia, finitud y signo de las derivadas (o derivadas unilaterales) de\(f\) en los puntos\(p_{i}\) señalados.

    Ejercicio\(\PageIndex{13}\)

    \(f : E^{n} \rightarrow E\)Sea lineal, es decir, tal que
    \ [
    \ left (\ forall\ overline {x},\ overline {y}\ en E^ {n}\ derecha)\ left (\ forall a, b\ in E^ {1}\ right)\ quad f (a\ overline {x} +b\ overline {y}) =a f (\ overline {x}) +b f (\ overline {y}).
    \]
    Demostrar que si\(g : E^{1} \rightarrow E^{n}\) es diferenciable en\(p,\) así es\(h=f \circ g\) y\(h^{\prime}(p)=f\left(g^{\prime}(p)\right) .\)
    [Pista:\(f\) es continua desde\(f(\overline{x})=\sum_{k=1}^{n} x_{k} f\left(\overline{e}_{k}\right) .\) Ver Problema 5 en el Capítulo 3, §§4-6.]


    5.1.E: Problemas en Funciones Derivadas en una Variable is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by LibreTexts.