5.3.E: Problemas en\(L^{\prime}\) Hôpital's Rule
- Page ID
- 114023
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Las fórmulas elementales de diferenciación se suponen conocidas.
Completar la prueba de la regla de L'Hôpital. Verificar que la suposición de diferenciabilidad pueda ser reemplazada por continuidad más existencia de derivadas finitas o infinitas (pero no ambas juntas infinitas)\(f^{\prime}\) y\(g^{\prime}\) on\(G_{\neg p}\) (misma prueba).
Mostrar que la regla falla para funciones complejas. Ver, sin embargo, Problemas\(3,\)\(7,\) y\(8 .\)
[Pista: Tomar\(p=0\) con
\ [
f (x) =x\ text {y} g (x) =x+x^ {2} e^ {i/x^ {2}} =x+x^ {2}\ left (\ cos\ frac {1} {x^ {2}} +i\ cdot\ sin\ frac {1} {x^ {2}} derecha).
\]
Entonces
\ [
\ lim _ {x\ fila derecha 0}\ frac {f (x)} {g (x)} =1,\ texto {aunque}\ lim _ {x\ fila derecha 0}\ frac {f^ {\ prime} (x)} {g^ {\ prime} (x)} =\ lim _ {x\ fila derecha 0}\ frac {1} {g^ ^ {\ prime} (x)} =0.
\]
En efecto,\(g^{\prime}(x)-1=(2 x-2 i / x) e^{i / x^{2}} .\) (¡Verifica!) De ahí
\ [
\ izquierda. \ izquierda|g^ {\ prime} (x)\ derecha|+1\ geq|2 x-2 i/x|\ quad\ texto {(para}\ izquierda|e^ {i/x^ {2}}\ derecha|=1\ derecha),
\]
así que
\ [
\ izquierda|g^ {\ prime} (x)\ derecha|\ geq-1+\ frac {2} {x}. \ quad (\ text {¿Por qué? })
\]
Deducir que
\ [
\ izquierda. \ izquierda|\ frac {1} {g^ {\ prime} (x)}\ derecha|\ leq\ izquierda|\ frac {x} {2-x}\ derecha|\ derecha 0. \ derecho]
\]
Demostrar la “regla simplificada de\(L^{\prime}\) Hôpital” para funciones reales o complejas\(\text { (also for vector-valued } f \text { and scalar-valued } g) :\) Si\(f\) y\(g\) son diferenciables en\(p,\) con\(g^{\prime}(p) \neq 0\) y\(f(p)=g(p)=0\), entonces
\ [\ lim _ {x\ rightarrow p}\ frac {f (x)} {g (x)} =\ frac {f^ {\ prime} (p)} {g^ {\ prime} (p)}.
\]
[Pista:
\ [
\ frac {f (x)} {g (x)} =\ frac {f (x) -f (p)} {g (x) -g (p)} =\ frac {\ Delta f} {\ Delta x}/\ frac {\ Delta g} {\ Delta x}\ fila derecha\ frac {f^ {\ prime} (p)} {g^ {\ prime} (p)}.
\]
¿Por qué\(\lim _{x \rightarrow+\infty} \frac{f(x)}{g(x)}\) no existe, aunque\(\lim _{x \rightarrow+\infty} \frac{f^{\prime}(x)}{g^{\prime}(x)}\) sí, en el siguiente ejemplo? Verificar y explicar.
\ [
f (x) =e^ {-2 x} (\ cos x+2\ sin x),\ quad g (x) =e^ {-x} (\ cos x+\ sin x).
\]
[Pista:\(g^{\prime}\) desaparece muchas veces en cada\(G_{+\infty} .\) uso de la propiedad Darboux para\(\text { proof. }]\)
Encuentra\(\lim _{x \rightarrow 0^{+}} \frac{e^{-1 / x}}{x}\).
\(\left.\text { [Hint: Substitute } z=\frac{1}{x} \rightarrow+\infty . \text { Then use the rule. }\right]\)
Verificar que se mantengan los supuestos de la regla de L'Hôpital, y encuentre los siguientes límites.
a)\(\lim _{x \rightarrow 0} \frac{e^{x}-e^{-x}}{\ln (e-x)+x-1}\);
b)\(\lim _{x \rightarrow 0} \frac{e^{x}-e^{-x}-2 x}{x-\sin x}\);
c)\(\lim _{x \rightarrow 0} \frac{(1+x)^{1 / x}-e}{x}\);
d)\(\lim _{x \rightarrow 0^{+}}\left(x^{q} \ln x\right), q>0\); e
)\(\lim _{x \rightarrow+\infty}\left(x^{-q} \ln x\right), q>0\); f
)\(\lim _{x \rightarrow 0^{+}} x^{x}\); g
)\(\lim _{x \rightarrow+\infty}\left(x^{q} a^{-x}\right), a>1, q>0\); h
)\(\lim _{x \rightarrow 0}\left(\frac{1}{x^{2}}-\operatorname{cotan}^{2} x\right)\); i
)\(\lim _{x \rightarrow+\infty}\left(\frac{\pi}{2}-\arctan x\right)^{1 / \ln x}\);
j)\(\lim _{x \rightarrow 0}\left(\frac{\sin x}{x}\right)^{1 /(1-\cos x)}\).
Demostrar la regla de L'Hôpital para\(f : E^{1} \rightarrow E^{n}(C)\) y\(g : E^{1} \rightarrow E^{1},\) con
\ [\ lim _ {k\ rightarrow p} |f (x) |=0=\ lim _ {x\ rightarrow p} |g (x) |, p\ en E^ {*}\ text {y} r\ en E^ {n},
\]
dejando sin cambios los demás supuestos.
\(\left.\left.\text { [Hint: Apply the rule to the components of } \frac{f}{g} \text { (respectively, to }\left(\frac{f}{g}\right)_{\mathrm{re}} \text { and }\left(\frac{f}{g}\right)_{\mathrm{im}}\right) .\right]\)
Dejar\(f\) y\(g\) ser complejo y diferenciable en\(G_{\neg p}, p \in E^{1} .\) Let
\ [
\ lim _ {x\ rightarrow p} f (x) =\ lim _ {x\ rightarrow p} g (x) =0,\ lim _ {x\ rightarrow p} f^ {\ prime} (x) =q,\ text {y}\ lim _ {x\ rightarrow p} g^ {\ prime} (x) =r\ neq 0.
\]
Demuéstralo\(\lim _{x \rightarrow p} \frac{f(x)}{g(x)}=\frac{q}{r}\).
[Pista:
\ [
\ frac {f (x)} {g (x)} =\ frac {f (x)} {x-p}/\ frac {g (x)} {x-p}.
\]
Aplica el Problema 7 para encontrar
\ [\ lim _ {x\ fila derecha p}\ frac {f (x)} {x-p}\ texto {y}\ lim _ {x\ fila derecha p}\ frac {g (x)} {x-p}.]
\]
Hacer Problema 8 para\(f : E^{1} \rightarrow C^{n}\) y\(g : E^{1} \rightarrow C\).