Saltar al contenido principal
LibreTexts Español

5.3.E: Problemas en\(L^{\prime}\) Hôpital's Rule

  • Page ID
    114023
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Las fórmulas elementales de diferenciación se suponen conocidas.

    Ejercicio\(\PageIndex{1}\)

    Completar la prueba de la regla de L'Hôpital. Verificar que la suposición de diferenciabilidad pueda ser reemplazada por continuidad más existencia de derivadas finitas o infinitas (pero no ambas juntas infinitas)\(f^{\prime}\) y\(g^{\prime}\) on\(G_{\neg p}\) (misma prueba).

    Ejercicio\(\PageIndex{2}\)

    Mostrar que la regla falla para funciones complejas. Ver, sin embargo, Problemas\(3,\)\(7,\) y\(8 .\)
    [Pista: Tomar\(p=0\) con
    \ [
    f (x) =x\ text {y} g (x) =x+x^ {2} e^ {i/x^ {2}} =x+x^ {2}\ left (\ cos\ frac {1} {x^ {2}} +i\ cdot\ sin\ frac {1} {x^ {2}} derecha).
    \]
    Entonces
    \ [
    \ lim _ {x\ fila derecha 0}\ frac {f (x)} {g (x)} =1,\ texto {aunque}\ lim _ {x\ fila derecha 0}\ frac {f^ {\ prime} (x)} {g^ {\ prime} (x)} =\ lim _ {x\ fila derecha 0}\ frac {1} {g^ ^ {\ prime} (x)} =0.
    \]
    En efecto,\(g^{\prime}(x)-1=(2 x-2 i / x) e^{i / x^{2}} .\) (¡Verifica!) De ahí
    \ [
    \ izquierda. \ izquierda|g^ {\ prime} (x)\ derecha|+1\ geq|2 x-2 i/x|\ quad\ texto {(para}\ izquierda|e^ {i/x^ {2}}\ derecha|=1\ derecha),
    \]
    así que
    \ [
    \ izquierda|g^ {\ prime} (x)\ derecha|\ geq-1+\ frac {2} {x}. \ quad (\ text {¿Por qué? })
    \]
    Deducir que
    \ [
    \ izquierda. \ izquierda|\ frac {1} {g^ {\ prime} (x)}\ derecha|\ leq\ izquierda|\ frac {x} {2-x}\ derecha|\ derecha 0. \ derecho]
    \]

    Ejercicio\(\PageIndex{3}\)

    Demostrar la “regla simplificada de\(L^{\prime}\) Hôpital” para funciones reales o complejas\(\text { (also for vector-valued } f \text { and scalar-valued } g) :\) Si\(f\) y\(g\) son diferenciables en\(p,\) con\(g^{\prime}(p) \neq 0\) y\(f(p)=g(p)=0\), entonces

    \ [\ lim _ {x\ rightarrow p}\ frac {f (x)} {g (x)} =\ frac {f^ {\ prime} (p)} {g^ {\ prime} (p)}.
    \]
    [Pista:
    \ [
    \ frac {f (x)} {g (x)} =\ frac {f (x) -f (p)} {g (x) -g (p)} =\ frac {\ Delta f} {\ Delta x}/\ frac {\ Delta g} {\ Delta x}\ fila derecha\ frac {f^ {\ prime} (p)} {g^ {\ prime} (p)}.
    \]

    Ejercicio\(\PageIndex{4}\)

    ¿Por qué\(\lim _{x \rightarrow+\infty} \frac{f(x)}{g(x)}\) no existe, aunque\(\lim _{x \rightarrow+\infty} \frac{f^{\prime}(x)}{g^{\prime}(x)}\) sí, en el siguiente ejemplo? Verificar y explicar.
    \ [
    f (x) =e^ {-2 x} (\ cos x+2\ sin x),\ quad g (x) =e^ {-x} (\ cos x+\ sin x).
    \]
    [Pista:\(g^{\prime}\) desaparece muchas veces en cada\(G_{+\infty} .\) uso de la propiedad Darboux para\(\text { proof. }]\)

    Ejercicio\(\PageIndex{5}\)

    Encuentra\(\lim _{x \rightarrow 0^{+}} \frac{e^{-1 / x}}{x}\).
    \(\left.\text { [Hint: Substitute } z=\frac{1}{x} \rightarrow+\infty . \text { Then use the rule. }\right]\)

    Ejercicio\(\PageIndex{6}\)

    Verificar que se mantengan los supuestos de la regla de L'Hôpital, y encuentre los siguientes límites.
    a)\(\lim _{x \rightarrow 0} \frac{e^{x}-e^{-x}}{\ln (e-x)+x-1}\);
    b)\(\lim _{x \rightarrow 0} \frac{e^{x}-e^{-x}-2 x}{x-\sin x}\);
    c)\(\lim _{x \rightarrow 0} \frac{(1+x)^{1 / x}-e}{x}\);
    d)\(\lim _{x \rightarrow 0^{+}}\left(x^{q} \ln x\right), q>0\); e
    )\(\lim _{x \rightarrow+\infty}\left(x^{-q} \ln x\right), q>0\); f
    )\(\lim _{x \rightarrow 0^{+}} x^{x}\); g
    )\(\lim _{x \rightarrow+\infty}\left(x^{q} a^{-x}\right), a>1, q>0\); h
    )\(\lim _{x \rightarrow 0}\left(\frac{1}{x^{2}}-\operatorname{cotan}^{2} x\right)\); i
    )\(\lim _{x \rightarrow+\infty}\left(\frac{\pi}{2}-\arctan x\right)^{1 / \ln x}\);
    j)\(\lim _{x \rightarrow 0}\left(\frac{\sin x}{x}\right)^{1 /(1-\cos x)}\).

    Ejercicio\(\PageIndex{7}\)

    Demostrar la regla de L'Hôpital para\(f : E^{1} \rightarrow E^{n}(C)\) y\(g : E^{1} \rightarrow E^{1},\) con

    \ [\ lim _ {k\ rightarrow p} |f (x) |=0=\ lim _ {x\ rightarrow p} |g (x) |, p\ en E^ {*}\ text {y} r\ en E^ {n},
    \]
    dejando sin cambios los demás supuestos.
    \(\left.\left.\text { [Hint: Apply the rule to the components of } \frac{f}{g} \text { (respectively, to }\left(\frac{f}{g}\right)_{\mathrm{re}} \text { and }\left(\frac{f}{g}\right)_{\mathrm{im}}\right) .\right]\)

    Ejercicio\(\PageIndex{8}\)

    Dejar\(f\) y\(g\) ser complejo y diferenciable en\(G_{\neg p}, p \in E^{1} .\) Let
    \ [
    \ lim _ {x\ rightarrow p} f (x) =\ lim _ {x\ rightarrow p} g (x) =0,\ lim _ {x\ rightarrow p} f^ {\ prime} (x) =q,\ text {y}\ lim _ {x\ rightarrow p} g^ {\ prime} (x) =r\ neq 0.
    \]
    Demuéstralo\(\lim _{x \rightarrow p} \frac{f(x)}{g(x)}=\frac{q}{r}\).
    [Pista:
    \ [
    \ frac {f (x)} {g (x)} =\ frac {f (x)} {x-p}/\ frac {g (x)} {x-p}.
    \]
    Aplica el Problema 7 para encontrar

    \ [\ lim _ {x\ fila derecha p}\ frac {f (x)} {x-p}\ texto {y}\ lim _ {x\ fila derecha p}\ frac {g (x)} {x-p}.]
    \]

    Ejercicio\(\PageIndex{*9}\)

    Hacer Problema 8 para\(f : E^{1} \rightarrow C^{n}\) y\(g : E^{1} \rightarrow C\).


    5.3.E: Problemas en\(L^{\prime}\) Hôpital's Rule is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by LibreTexts.