8.5.E: Problemas en la Integración de Funciones Reales Extendidas
- Page ID
- 113739
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Usando las fórmulas en (1) y nuestras convenciones, verificar que
(i)\(\overline{\int}_{A} f=+\infty\) iff\(\overline{\int}_{A} f^{+}=\infty\);
(ii)\(\underline{\int}_{A} f=\infty\) iff\(\underline{\int}_{A} f^{+}=\infty ;\) y
(iii)\(\overline{f}_{A} f=-\infty\) iff\(\underline{\int}_{A} f^{-}=\infty\) y\(\overline{\int}_{A} f^{+}<\infty\).
(iv) Derivar una condición similar a (iii) para\(\underline{\int}_{A} f=-\infty\).
v) Revisión Problema 6 del Capítulo 4, §4.
Rellene los datos de prueba faltantes en Teoremas 1 a 3 y Lemmas 1 y 2.
Demostrar que si\(\underline{\int_{A}} f=\infty,\) hay un mapa elemental y (extendido) real\(g \leq f\) en\(A,\) con\(\int_{A} g=\infty\).
[Esquema: Por Problema\(1,\) tenemos
\ [
\ subrayado {\ int_ {A}} f^ {+} =\ infty.
\]
Como Lemmas 1 y 2 seguramente se mantienen para funciones no negativas, arregla una medible\(F \leq f^{+}\)\((F \geq 0),\) con
\ [\ int_ {A} F=\ subrayado {\ int_ {A}} f^ {+} =\ infty.
\]
Argumentando como en Teorema\(3,\) encontramos un mapa elemental y no negativo\(g \leq F,\) con
\ [
(1+\ varepsilon)\ int_ {A} g=\ int_ {A} F=\ infty;
\]
así\(\int_{A} g=\infty\) y\(0 \leq g \leq F \leq f^{+}\) sucesivamente\(A\).
Vamos
\ [
A_ {+} =A (F>0)\ in\ mathcal {M}
\]
y
\ [
A_ {0} =A (F=0)\ in\ mathcal {M}
\]
(Teorema 1 en §2). On\(A_{+},\)
\ [
g\ leq F\ leq f^ {+} =f (\ text {¿por qué? }),
\]
mientras está encendido\(A_{0}, g=F=0 ;\) así
\ [
\ int_ {A_ {+}} g=\ int_ {A} g=\ infty (\ mathrm {por qué}?) .
\]
Ahora redefine\(g=-\infty\) on\(A_{0}\) (solo). Mostrar que\(g\) es entonces la función requerida.]
Para cualquier\(f: S \rightarrow E^{*},\) prueba lo siguiente.
(a) Si\(\overline{\int}_{A} f<\infty,\) entonces\(f<\infty\) a.e. on\(A\).
(b) Si\(\underline{\int_{A}} f\) es ortodoxo y\(>-\infty,\) luego\(f>-\infty\) a.e. on\(A\).
[Pista: Utilice el Problema 1 y aplique el Corolario 1 para\(f^{+} ;\) así probar (a). Entonces para (b), use el Teorema 1 (e').]
\(\Rightarrow 5\). Para cualquier\(f, g: S \rightarrow E^{*},\) prueba que
(i)\(\overline{\int}_{A} f+\overline{\int}_{A} g \geq \overline{\int}_{A}(f+g),\) y
(ii)\(\underline{\int}_{A}(f+g) \geq \underline{\int}_{A} f+\underline{\int}_{A} g \quad\) si\(\left|\underline{\int}_{A} g\right|<\infty\).
[Pista: Supongamos que
\ [\ overline {\ int} _ {A} f+\ overline {\ int} _ {A} g<\ overline {\ int} _ {A} (f+g).
\]
Luego están los números
\ [
u>\ overline {\ int} _ {A} f\ text {y} v>\ overline {\ int} _ {A} g,
\]
con
\ [
u+v\ leq
overline {\ int} _ {A} (f+g).
\]
(¿Por qué?) Así Lema 1 produce mapas elementales y (extendidos) reales\(F \geq f\) y\(G \geq g\) tales que
\ [
u>\ overline {\ int} _ {A} F\ text {y} v>\ overline {\ int} _ {A} G
\]
Como\(f+g \leq F+G\) en\(A,\) Teorema\(1(\mathrm{c})\) de §5 y Problema 6 de §4 mostrar que
\ [
\ overline {\ int} _ {A} (f+g)\ leq\ int_ {A} (F+G) =\ int_ {A} F+\ int_ {A} g<u+v,
\]
contrario a
\ [
u+v\ leq\ overline {\ int} _ _ {A} (f+g).
\]
Similarmente probar la cláusula (ii).]
Problema continuo\(5,\) probar que
\ [
\ overline {\ int} _ {A} (f+g)\ geq\ overline {\ int} _ {A} f+\ subrayado {\ int} _ {A} _ {A} g\ geq\ subrayado {\ int} _ {A} (f+g)\ geq\ subrayado {\ int} _ _ {A} f+\ subrayado {\ int} _ A} g
\]
siempre\(\left|\underline{\int}_{A} g\right|<\infty\).
[Pista para la segunda desigualdad: Podemos suponer que
\ [
\ overline {\ int} _ {A} (f+g) <\ infty\ text {and}\ overline {\ int} _ {A} f>-\ infty.
\]
(¿Por qué?) Aplicar Problemas 5 y\(4(\mathrm{a})\) a
\ [
\ overline {\ int} _ {A} ((f+g) + (-g)).
\]
Usar teorema\(\left.1\left(\mathrm{e}^{\prime}\right) .\right]\)
Demostrar lo siguiente.
(i)\ [
\ overline {\ int} _ {A} |f|<\ infty\ text {iff} -\ infty<\ subrayado {\ int} _ {A} f\ leq\ overline {\ int} _ {A} f<\ infty.
\]
(ii) Si\(\overline{f}_{A}|f|<\infty\) y\(\overline{\int}_{A}|g|<\infty,\) luego
\ [
\ izquierda|\ overline {\ int} _ {A} f-\ overline {\ int} _ {A} g\ derecha|\ leq\ overline {\ int} _ {A} |f-g|
\]
y
\ [
\ izquierda|\ subrayado {\ int} _ {A} f-\ subrayado {\ int} _ {A} g\ derecha|\ leq\ overline {\ int} _ {A} |f-g|.
\]
[Pista: Problemas de uso\(5 \text { and } 6 .]\)
Demostrar que cualquier medida firmada\(\left.\bar{s}_{f} \text { (Note } 4\right)\) es la diferencia de dos medidas:\(\bar{s}_{f}=\bar{s}_{f+}-\bar{s}_{f-}\).