Saltar al contenido principal
LibreTexts Español

2.12: Consejos y trucos de álgebra IV (Consejos para tratar fracciones)

  • Page ID
    116816
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Una rápida sugerencia de fracción

    Un par de ideas mientras se trabaja con fracciones. Tenga en cuenta que si distribuye un número por fracción, se multiplica en la parte superior:

    \(x \left( \frac{1}{2} + y \right) = \frac{x}{2} + xy\)

    La razón es cuando multiplicamos fracciones, nos multiplicamos directamente, y siempre podemos pensar en\(x\) como\(\frac{x}{1}\). De ahí\(x \cdot \frac{1}{2} = \frac{x}{1} \cdot \frac{1}{2} = \frac{x}{2}\).

    Fracciones Complejas

    Si tienes “fracciones dentro de fracciones”, esto llama a ser simplificado. Una forma de hacerlo es multiplicar la parte superior e inferior de la fracción externa por el mismo número para que las fracciones internas desaparezca. Por ejemplo,

    \(\cfrac{\cfrac{1}{3} - \cfrac{\sqrt{3}}{3} }{ \cfrac{1}{9} }\)

    Si multiplicamos arriba e abajo por\(9\) en el siguiente ejemplo, eso se deshace de los\(3\) y los\(9\) denominadores:

    \[\begin{align*} \left(\cfrac{\cfrac{1}{3} - \cfrac{\sqrt{3}}{3} }{ \cfrac{1}{9} } \right) \cdot \cfrac{9}{9} & = \cfrac{9 \cdot \cfrac{1}{3} - 9 \cdot \cfrac{\sqrt{3}}{3} }{ 9 \cdot \cfrac{1}{9} } \\ & = \frac{3 - 3 \sqrt{3}}{1} \\ & = 3 - 3 \sqrt{3} \end{align*}\]

    También se puede multiplicar por el recíproco en lugar de dividir. Me gusta esto:

    \[\begin{align*} \left(\cfrac{\cfrac{1}{3} - \cfrac{\sqrt{3}}{3} }{ \cfrac{1}{9} } \right) & = \left(\cfrac{1}{3} - \cfrac{\sqrt{3}}{3}\right) \cdot \frac{9}{1} \\ & = 9 \cdot \cfrac{1}{3} - 9 \cdot \cfrac{\sqrt{3}}{3} \\ & = 3 - 3 \sqrt{3} \end{align*}\]

    Lo mismo sucede con las variables. Considera este problema:

    \(\cfrac{\cfrac{1}{x} + \cfrac{1}{y}}{x}\)

    Podemos simplificar esto multiplicando por\(xy\) para deshacernos de los\(x\) y\(y\) denominadores en la parte superior.

    \[\begin{align*} \cfrac{\cfrac{1}{x} + \cfrac{1}{y}}{x} & = \cfrac{\cfrac{1}{x} + \cfrac{1}{y}}{x} \cdot \frac{xy}{xy} \\ & = \cfrac{\cfrac{xy}{x} + \cfrac{xy}{y}}{xxy} \\ & = \cfrac{y + x}{x^2y} \end{align*}\]

    Aquí hay un ejemplo más.

    Simplificar\(\cfrac{\cfrac{1}{x+1} - \cfrac{1}{x-1}}{\cfrac{1}{x}}\).

    Para simplificar este, necesitamos borrar todos los denominadores multiplicando por\(x\),\((x+1)\) y\((x-1)\). No es fácil, pero podemos hacerlo.

    \[\begin{align*} \cfrac{\cfrac{1}{x+1} - \cfrac{1}{x-1}}{\cfrac{1}{x}} \cdot \frac{x(x-1)(x+1)}{x(x-1)(x+1)} & = \cfrac{\cfrac{x(x+1)(x-1)}{x+1} - \cfrac{x(x+1)(x-1)}{x-1}}{\cfrac{x(x+1)(x-1)}{x}}\\ & = \cfrac{x(x-1) - x(x+1)}{(x-1)(x+1)}\\ & = \cfrac{x^2 - x - (x^2 + x)}{x^2 - 1} \\ & = \cfrac{x^2 - x - x^2 - x}{x^2 - 1} \\ & = \cfrac{-2x}{x^2 - 1} \end{align*}\]


    This page titled 2.12: Consejos y trucos de álgebra IV (Consejos para tratar fracciones) is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Tyler Seacrest via source content that was edited to the style and standards of the LibreTexts platform.