Saltar al contenido principal
LibreTexts Español

3.4: Consejos y trucos de álgebra Parte VI (Logaritmos)

  • Page ID
    116626
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Logaritmos

    Un logaritmo es la función inversa a una función exponencial. Por ejemplo, para la función exponencial\(y = 2^x\), si tenemos una entrada de\(x = 6\), obtenemos una salida de\(y = 64\), y escribimos\(64 = 2^6\). La función logarítmica\(y = \log_2(x)\) es lo contrario de esto. Intercambiamos la entrada y la salida, así que ahora\(x = 64\) y\(y = 6\). Vemos\(6 = \log_2(64)\).

    En el cálculo, utilizaremos mayormente la función exponencial\(e^x\) y su inversa,\(\ln(x)\). A continuación se presentan algunas fórmulas importantes:

    \[\begin{align*} e^{\ln(x)} & = x \\ \ln(e^x) & = x \\ \ln(x) + \ln(y) & = \ln(xy) \\ \ln(x) - \ln(y) & = \ln\left(\frac{x}{y}\right) \\ a \ln(x) & = \ln(x^a) \end{align*}\]

    Ejemplos:

    \(\ln(x^2) - \ln(x)\).

    Hay dos formas de hacer esta. Primero, podemos derribar al exponente de dos al frente\(\ln(x^2) = 2 \ln(x)\). Luego se pueden combinar los términos similares de\(2\ln(x)\) y\(\ln(x)\):

    \[\begin{align*} \ln(x^2) - \ln(x) & = 2 \ln(x) - \ln(x) \\ & = \boxed{\ln(x)} \end{align*}\]

    Alternativamente, podemos reescribir la resta como una división, así:

    \[\begin{align*} \ln(x^2) - \ln(x) & = \ln\left(\frac{x^2}{x}\right) \\ & = \boxed{\ln(x)} \end{align*}\]

    ¡De cualquier manera obtenemos la misma respuesta!

    \(\ln(e^3 x^4) - 3 \ln(x)\).

    Primero, reescribimos la multiplicación usando la suma. Entonces podemos simplemente a partir de ahí.

    \[\begin{align*} \ln(e^3 x^4) - 3 \ln(x) & = \ln(e^3) + \ln(x^4) - 3 \ln(x)\\ & = 3 + 4 \ln(x) - 3 \ln(x) \\ & = \boxed{3 + \ln(x)} \end{align*}\]

    \(\ln(\sqrt{x})\).

    Sabemos, entonces.

    \(\ln\left(\frac{\sqrt{x} y}{z^3}\right) - \ln\left(\frac{z}{\sqrt{x} y^3}\right)\).

    Podemos reescribir todos los productos y divisiones como suma y resta:

    \[\begin{align*} \ln\left(\frac{\sqrt{x} y}{z^3}\right) - \ln\left(\frac{z}{\sqrt{x} y^3}\right) & = \ln(\sqrt{x}) + \ln(y) - \ln(z^3) - [\ln(z) - \ln(\sqrt{x}) - \ln(y^3)] \\ & = \frac{1}{2} \ln(x) + \ln(y) - 3 \ln(z) - \ln(z) + \frac{1}{2} \ln(x) + 3 \ln(y) \\ & = \boxed{\ln(x) + 4 \ln(y) - 4 \ln(z)}. \end{align*}\]


    This page titled 3.4: Consejos y trucos de álgebra Parte VI (Logaritmos) is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Tyler Seacrest via source content that was edited to the style and standards of the LibreTexts platform.