Saltar al contenido principal
LibreTexts Español

2.4: Computación inversa

  • Page ID
    119065
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Ver Inversos de Computación en YouTube

    El cálculo de la forma de escalón de fila reducida de una matriz\(n\) -by-\(n\) invertible se\(\text{A}\) puede usar para calcular la matriz inversa\(\text{A}^{−1}\).

    Por ejemplo, recordemos cómo encontramos el inverso general de una matriz de dos por dos escribiendo\(\text{AA}^{−1} = \text{I}\), es decir,

    \[\left(\begin{array}{cc}a&b\\c&d\end{array}\right)\left(\begin{array}{cc}x_1&x_2\\y_1&y_2\end{array}\right)=\left(\begin{array}{cc}1&0\\0&1\end{array}\right).\nonumber \]

    Esta ecuación de matriz única equivale a dos conjuntos de dos ecuaciones y dos incógnitas, a saber

    \[\left(\begin{array}{cc}a&b\\c&d\end{array}\right)\left(\begin{array}{c}x_1\\y_1\end{array}\right)=\left(\begin{array}{c}1\\0\end{array}\right),\quad\left(\begin{array}{cc}a&b\\c&d\end{array}\right)\left(\begin{array}{c}x_2\\y_2\end{array}\right)=\left(\begin{array}{c}0\\1\end{array}\right).\nonumber \]

    Podemos resolver estas dos ecuaciones llevando\(\text{A}\) a la forma de escalón de fila reducida. No tiene sentido hacer esto dos veces, así que en su lugar formamos una matriz doblemente aumentada y nos vamos a trabajar en eso:

    \[\begin{array}{l}\left(\begin{array}{cccc}a&b&1&0\\c&d&0&1\end{array}\right)\to\left(\begin{array}{cccc}1&b/a&1/a&0\\c&d&0&1\end{array}\right)\to\left(\begin{array}{cccc}1&b/a&1/a&0\\0&\frac{ad-bc}{a}&-c/a&1\end{array}\right)\to \\ \left(\begin{array}{cccc}1&b/a&1/a&0\\0&1&-\frac{c}{ad-bc}&\frac{a}{ad-bc}\end{array}\right)\to\left(\begin{array}{cccc}1&0&\frac{d}{ad-bc}&-\frac{b}{ad-bc} \\ 0&1&-\frac{c}{ad-bc}&\frac{a}{ad-bc}\end{array}\right).\end{array}\nonumber \]

    La tercera columna de la matriz reducida corresponde a la primera columna de la matriz inversa, y la cuarta columna de la matriz reducida se corresponde con la segunda columna de la matriz inversa. Por lo tanto, hemos rederivado

    \[\text{A}^{-1}=\frac{1}{ad-bc}\left(\begin{array}{rr}d&-b\\-c&a\end{array}\right).\nonumber \]

    En otras palabras, al pasar\(\text{A}\) a una forma de escalón de fila reducida mientras realizamos simultáneamente las mismas operaciones en la matriz de identidad\(\text{I}\), logramos la siguiente transformación:

    \[\left(\begin{array}{cc}\text{A}&\text{I}\end{array}\right)\to\left(\begin{array}{cc}\text{I}&\text{A}^{-1}\end{array}\right).\nonumber \]

    Para ilustrar más este algoritmo, encontramos la inversa de la matriz de tres por tres utilizada en nuestro primer ejemplo. Tenemos

    \[\begin{array}{l}\left(\begin{array}{rrrrrr}-3&2&-1&1&0&0\\6&-6&7&0&1&0\\3&-4&4&0&0&1\end{array}\right)\to\left(\begin{array}{rrrrrr}-3&2&-1&1&0&0\\0&-2&5&2&1&0\\0&-2&3&1&0&1\end{array}\right)\to \\ \left(\begin{array}{rrrrrr}-3&2&-1&1&0&0\\0&-2&5&2&1&0\\0&0&-2&-1&-1&1\end{array}\right)\to\left(\begin{array}{rrrrrr}-3&0&4&3&1&0\\0&-2&5&2&1&0\\0&0&-2&-1&-1&1\end{array}\right)\to \\ \left(\begin{array}{rrrrrr}-3&0&0&1&-1&2\\0&-2&0&-1/2&-3/2&5/2\\0&0&-2&-1&-1&1\end{array}\right)\to\left(\begin{array}{rrrrrr}1&0&0&-1/3&1/3&-2/3 \\ 0&1&0&1/4&3/4&-5/4 \\ 0&0&1&1/2&1/2&-1/2\end{array}\right)\end{array}\nonumber \]

    y uno puede comprobar que

    \[\left(\begin{array}{rrr}-3&2&-1\\6&-6&7\\3&-4&4\end{array}\right)\left(\begin{array}{rrr}-1/3&1/3&-2/3 \\ 1/4&3/4&-5/4 \\ 1/2&1/2&-1/2\end{array}\right)=\left(\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right).\nonumber \]

    También es interesante comprobar que la solución a la ecuación\(\text{Ax} = \text{b}\) es\(\text{x} = \text{A}^{−1}\text{b}\). Usando el\(\text{b}\) de nuestro primer ejemplo, tenemos

    \[\text{x}=\left(\begin{array}{rrr}-1/3&1/3&-2/3 \\ 1/4&3/4&-5/4 \\ 1/2&1/2&-1/2\end{array}\right)\left(\begin{array}{r}-1\\-7\\-6\end{array}\right)=\left(\begin{array}{r}2\\2\\-1\end{array}\right),\nonumber \]

    como se obtuvo previamente.


    This page titled 2.4: Computación inversa is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Jeffrey R. Chasnov via source content that was edited to the style and standards of the LibreTexts platform.