7.3: Ecuaciones Lineales
- Page ID
- 119225
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)La ecuación diferencial lineal de primer orden (lineal en\(y\) y su derivada) se puede escribir en la forma
\[\frac{d y}{d x}+p(x) y=g(x) \nonumber \]
con la condición inicial\(y\left(x_{0}\right)=y_{0}\). Las ecuaciones lineales de primer orden se pueden integrar usando un factor de integración\(\mu(x)\). Multiplicamos la ecuación\ ref {7.8} por\(\mu(x)\),
\[\mu(x)\left[\frac{d y}{d x}+p(x) y\right]=\mu(x) g(x) \nonumber \]

y tratar de determinar\(\mu(x)\) para que
\[\mu(x)\left[\frac{d y}{d x}+p(x) y\right]=\frac{d}{d x}[\mu(x) y] \nonumber \]
Ecuación Ecuación\ ref {7.9} luego se convierte
\[\frac{d}{d x}[\mu(x) y]=\mu(x) g(x) \nonumber \]
Ecuación Ecuación\ ref {7.11} se integra fácilmente usando\(\mu\left(x_{0}\right)=\mu_{0}\) y\(y\left(x_{0}\right)=y_{0}\):
\[\mu(x) y-\mu_{0} y_{0}=\int_{x_{0}}^{x} \mu(x) g(x) d x \nonumber \]
\[y=\frac{1}{\mu(x)}\left(\mu_{0} y_{0}+\int_{x_{0}}^{x} \mu(x) g(x) d x\right) . \nonumber \]
Queda por determinar a\(\mu(x)\) partir de la Ecuación\ ref {7.10}. Diferenciar y expandir los rendimientos de Ecuación\ ref {7.10}
\[\mu \frac{d y}{d x}+p \mu y=\frac{d \mu}{d x} y+\mu \frac{d y}{d x} ; \nonumber \]
y al simplificar,
\[\frac{d \mu}{d x}=p \mu . \nonumber \]
Ecuación La ecuación\ ref {7.13} es separable y se puede integrar:
\[\begin{gathered} \int_{\mu_{0}}^{\mu} \frac{d \mu}{\mu}=\int_{x_{0}}^{x} p(x) d x, \\ \ln \frac{\mu}{\mu_{0}}=\int_{x_{0}}^{x} p(x) d x \\ \mu(x)=\mu_{0} \exp \left(\int_{x_{0}}^{x} p(x) d x\right) . \end{gathered} \nonumber \]
Observe que ya que\(\mu_{0}\) cancela fuera de\(Equation \ref{7.12}\), se acostumbra asignar\(\mu_{0}=1\). La solución a la Ecuación\ ref {7.8} que satisface la condición inicial\(y\left(x_{0}\right)=y_{0}\) se escribe comúnmente como
\[y=\frac{1}{\mu(x)}\left(y_{0}+\int_{x_{0}}^{x} \mu(x) g(x) d x\right) \nonumber \]
con
\[\mu(x)=\exp \left(\int_{x_{0}}^{x} p(x) d x\right) \nonumber \]
el factor integrador. Este importante resultado encuentra un uso frecuente en las matemáticas aplicadas.
Ejemplo: Resolver\(\frac{d y}{d x}+2 y=e^{-x}\), con\(y(0)=3 / 4\).
Obsérvese que esta ecuación no es separable. Con\(p(x)=2\) y\(g(x)=e^{-x}\), tenemos
\[\begin{aligned} \mu(x) &=\exp \left(\int_{0}^{x} 2 d x\right) \\ &=e^{2 x} \end{aligned} \nonumber \]
y
\[\begin{aligned} y &=e^{-2 x}\left(\frac{3}{4}+\int_{0}^{x} e^{2 x} e^{-x} d x\right) \\ &=e^{-2 x}\left(\frac{3}{4}+\int_{0}^{x} e^{x} d x\right) \\ &=e^{-2 x}\left(\frac{3}{4}+\left(e^{x}-1\right)\right) \\ &=e^{-2 x}\left(e^{x}-\frac{1}{4}\right) \\ &=e^{-x}\left(1-\frac{1}{4} e^{-x}\right) \end{aligned} \nonumber \]
Ejemplo: Resolver\(\frac{d y}{d x}-2 x y=x\), con\(y(0)=0\).
Esta ecuación es separable, y la resolvemos de dos maneras. Primero, usando un factor integrador con\(p(x)=-2 x\) y\(g(x)=x\):
\[\begin{aligned} \mu(x) &=\exp \left(-2 \int_{0}^{x} x d x\right) \\ &=e^{-x^{2}} \end{aligned} \nonumber \]
y
\[y=e^{x^{2}} \int_{0}^{x} x e^{-x^{2}} d x \nonumber \]
La integral se puede hacer por sustitución con\(u=x^{2}, d u=2 x d x\):
\[\begin{aligned} \int_{0}^{x} x e^{-x^{2}} d x &=\frac{1}{2} \int_{0}^{x^{2}} e^{-u} d u \\ &\left.=-\frac{1}{2} e^{-u}\right]_{0}^{x^{2}} \\ &=\frac{1}{2}\left(1-e^{-x^{2}}\right) \end{aligned} \nonumber \]
Por lo tanto,
\[\begin{aligned} y &=\frac{1}{2} e^{x^{2}}\left(1-e^{-x^{2}}\right) \\ &=\frac{1}{2}\left(e^{x^{2}}-1\right) \end{aligned} \nonumber \]
Segundo, integramos separando variables:
\[\begin{gathered} \frac{d y}{d x}-2 x y=x, \\ \frac{d y}{d x}=x(1+2 y), \\ \int_{0}^{y} \frac{d y}{1+2 y}=\int_{0}^{x} x d x \\ \frac{1}{2} \ln (1+2 y)=\frac{1}{2} x^{2}, \\ 1+2 y=e^{x^{2}} \\ y=\frac{1}{2}\left(e^{x^{2}}-1\right) \end{gathered} \nonumber \]
Los resultados de los dos métodos de solución diferentes son los mismos, y la elección del método es una preferencia personal.