3.3: Ecuaciones Lineales
- Page ID
- 116960
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)La ecuación diferencial lineal de primer orden (lineal en\(y\) y su derivada) se puede escribir en la forma \[\label{eq:1}\frac{dy}{dx}+p(x)y=g(x),\]con la condición inicial\(y(x_0) = y_0\). Las ecuaciones lineales de primer orden se pueden integrar usando un factor de integración\(\mu(x)\). Nos multiplicamos\(\eqref{eq:1}\) por\(\mu(x)\), \[\label{eq:2}\mu (x)\left[\frac{dy}{dx}+p(x)y\right]=\mu (x)g(x),\]e intentamos determinar\(\mu (x)\) para que \[\label{eq:3}\mu (x)\left[\frac{dy}{dx}+p(x)y\right]=\frac{d}{dx}[\mu (x)y].\]

Ecuación\(\eqref{eq:2}\) entonces se convierte \[\label{eq:4}\frac{d}{dx}[\mu (x)y]=\mu (x)g(x).\]
La ecuación\(\eqref{eq:4}\) se integra fácilmente usando\(\mu (x_0)=\mu_0\) y\(y(x_0)=y_0\):
\[\mu (x)y-\mu_0 y_0=\int_{x_0}^x\mu (x)g(x)dx,\nonumber\]o \[\label{eq:5}y=\frac{1}{\mu (x)}\left(\mu_0y_0+\int_{x_0}^x\mu(x)g(x)dx\right).\]
Queda por determinar a\(\mu(x)\) partir de\(\eqref{eq:3}\). Diferenciar y ampliar\(\eqref{eq:3}\) los rendimientos\[\mu\frac{dy}{dx}+p\mu y=\frac{d\mu}{dx}y+\mu\frac{dy}{dx};\nonumber\] y al simplificar, \[\label{eq:6}\frac{d\mu}{dx}=p\mu.\]
La ecuación\(\eqref{eq:6}\) es separable y se puede integrar:
\[\begin{aligned}\int_{\mu_0}^{\mu}\frac{d\mu}{\mu}&=\int_{x_0}^xp(x)dx, \\ \ln\frac{\mu}{\mu_0}&=\int_{x_0}^xp(x)dx, \\ \mu(x)&=\mu_0\exp\left(\int_{x_0}^xp(x)dx\right).\end{aligned}\]
Observe que ya que\(\mu_0\) cancela fuera de\(\eqref{eq:5}\), se acostumbra asignar\(\mu_0 = 1\). La solución para\(\eqref{eq:1}\) satisfacer la condición inicial\(y(x_0) = y_0\) se escribe entonces comúnmente como\[y=\frac{1}{\mu(x)}\left(y_0+\int_{x_0}^x\mu(x)g(x)dx\right),\nonumber\] con\[\mu(x)=\exp\left(\int_{x_0}^xp(x)dx\right)\nonumber\] el factor integrador. Este importante resultado encuentra un uso frecuente en las matemáticas aplicadas.
Resolver\(\frac{dy}{dx}+2y=e^{-x}\), con\(y(0)=3/4\).
Solución
Obsérvese que esta ecuación no es separable. Con\(p(x) = 2\) y\(g(x) = e^{−x}\), tenemos\[\begin{aligned}\mu(x)&=\exp\left(\int_0^x 2dx\right) \\ &=e^{2x},\end{aligned}\] y\[\begin{aligned}y&=e^{-2x}\left(\frac{3}{4}+\int_0^x e^{2x}e^{-x}dx\right) \\ &=e^{-2x}\left(\frac{3}{4}+\int_0^x e^xdx\right) \\ &=e^{-2x}\left(\frac{3}{4}+(e^x-1)\right) \\ &=e^{-2x}\left(e^x-\frac{1}{4}\right) \\ &=e^{-x}\left(1-\frac{1}{4}e^{-x}\right).\end{aligned}\]
Resolver\(\frac{dy}{dx}-2xy=x\), con\(y(0)=0\).
Solución
Esta ecuación es separable, y la resolvemos de dos maneras. Primero, usando un factor integrador con\(p(x) = −2x\) y\(g(x) = x\):
\[\begin{aligned}\mu(x)&=\exp\left(-2\int_0^x xdx\right) \\ &=e^{-x^2},\end{aligned}\]y\[y=e^{x^2}\int_0^x xe^{-x^2}dx.\nonumber\]
La integral se puede hacer por sustitución con\(u = x^2\),\(du = 2xdx\):
\[\begin{aligned}\int_0^x xe^{-x^2}dx&=\frac{1}{2}\int_0^{x^2}e^{-u}du \\ &=-\frac{1}{2}e^{-u}]_0^{x^2}\\ &=\frac{1}{2}\left(1-e^{-x^2}\right).\end{aligned}\]
Por lo tanto,\[\begin{aligned}y&=\frac{1}{2}e^{x^2}\left(1-e^{-x^2}\right) \\ &=\frac{1}{2}\left(e^{x^2}-1\right).\end{aligned}\]
Segundo, integramos separando variables:
\[\begin{aligned}\frac{dy}{dx}-2xy&=x, \\ \frac{dy}{dx}&=x(1+2y), \\ \int_0^y\frac{dy}{1+2y}&=\int_0^x xdx, \\ \frac{1}{2}\ln (1+2y)&=\frac{1}{2}x^2, \\ 1+2y&=e^{x^2}, \\ y&=\frac{1}{2}\left(e^{x^2}-1\right).\end{aligned}\]
Los resultados de los dos métodos de solución diferentes son los mismos, y la elección del método es una preferencia personal.