Saltar al contenido principal
LibreTexts Español

Apéndice B: Tabla de Transformaciones de Laplace

  • Page ID
    115480
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    La función\(u\) es la función Heaviside,\(\delta\) es la función delta Dirac, y

    \[\Gamma(t)=\int_{0}^{\infty}e^{-\tau}\tau^{t-1}d\tau ,\qquad\text{erf}(t)=\frac{2}{\sqrt{\pi}}\int_{0}^{t}e^{-\tau^{2}}d\tau , \qquad\text{erfc}(t)=1-\text{erf}(t). \nonumber \]

    Mesa\(\PageIndex{1}\)

    \(f(t)\) \(F(s)=\mathcal{L}\{f(t)\}=\int_{0}^{\infty}e^{-st}f(t)dt\)
    \ (f (t)\) ">\(C\) \ (F (s) =\ mathcal {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) dt\) ">\(\frac{C}{s}\)
    \ (f (t)\) ">\(t\) \ (F (s) =\ mathcal {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) dt\) ">\(\frac{1}{s^{2}}\)
    \ (f (t)\) ">\(t^{2}\) \ (F (s) =\ mathcal {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) dt\) ">\(\frac{2}{s^{3}}\)
    \ (f (t)\) ">\(t^{n}\) \ (F (s) =\ mathcal {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) dt\) ">\(\frac{n!}{s^{n+1}}\)
    \ (f (t)\) ">\(t^{p}\quad (p>0)\) \ (F (s) =\ mathcal {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) dt\) ">\(\frac{\Gamma (p+1)}{s^{p+1}}\)
    \ (f (t)\) ">\(e^{-at}\) \ (F (s) =\ mathcal {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) dt\) ">\(\frac{1}{s+a}\)
    \ (f (t)\) ">\(\sin(\omega t)\) \ (F (s) =\ mathcal {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) dt\) ">\(\frac{\omega}{s^{2}+\omega ^{2}}\)
    \ (f (t)\) ">\(\cos(\omega t)\) \ (F (s) =\ mathcal {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) dt\) ">\(\frac{s}{s^{2}+\omega^{2}}\)
    \ (f (t)\) ">\(\sinh (\omega t)\) \ (F (s) =\ mathcal {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) dt\) ">\(\frac{\omega}{s^{2}-\omega ^{2}}\)
    \ (f (t)\) ">\(\cosh (\omega t)\) \ (F (s) =\ mathcal {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) dt\) ">\(\frac{s}{s^{2}-\omega^{2}}\)
    \ (f (t)\) ">\(u(t-a)\) \ (F (s) =\ mathcal {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) dt\) ">\(\frac{e^{-as}}{s}\)
    \ (f (t)\) ">\(\delta (t)\) \ (F (s) =\ mathcal {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) dt\) ">\(1\)
    \ (f (t)\) ">\(\delta (t-a)\) \ (F (s) =\ mathcal {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) dt\) ">\(e^{-as}\)
    \ (f (t)\) ">\(\text{erf}\left(\frac{t}{2a}\right)\) \ (F (s) =\ mathcal {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) dt\) ">\(\frac{1}{s}e^{(as)^{2}}\text{erfc}(as)\)
    \ (f (t)\) ">\(\frac{1}{\sqrt{\pi t}}\text{exp}\left(\frac{-a^{2}}{4t}\right)\quad (a\geq 0)\) \ (F (s) =\ mathcal {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) dt\) ">\(\frac{e^{-as}}{\sqrt{s}}\)
    \ (f (t)\) ">\(\frac{1}{\sqrt{\pi t}}-ae^{a^{2}t}\text{erfc}(a\sqrt{t})\quad (a>0)\) \ (F (s) =\ mathcal {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) dt\) ">\(\frac{1}{\sqrt{s}+a}\)
    \ (f (t)\) ">\(af(t)+bg(t)\) \ (F (s) =\ mathcal {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) dt\) ">\(aF(s)+bG(s)\)
    \ (f (t)\) ">\(f(at)\quad (a>0)\) \ (F (s) =\ mathcal {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) dt\) ">\(\frac{1}{a}F\left(\frac{s}{a}\right)\)
    \ (f (t)\) ">\(f(t-a)u(t-a)\) \ (F (s) =\ mathcal {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) dt\) ">\(e^{-as}F(s)\)
    \ (f (t)\) ">\(e^{-at}f(t)\) \ (F (s) =\ mathcal {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) dt\) ">\(F(s+a)\)
    \ (f (t)\) ">\(g'(t)\) \ (F (s) =\ mathcal {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) dt\) ">\(sG(s)-g(0)\)
    \ (f (t)\) ">\(g''(t)\) \ (F (s) =\ mathcal {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) dt\) ">\(s^{2}G(s)-sg(0)-g'(0)\)
    \ (f (t)\) ">\(g'''(t)\) \ (F (s) =\ mathcal {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) dt\) ">\(s^{3}G(s)-s^{2}g(0)-sg'(0)-g''(0)\)
    \ (f (t)\) ">\(g^{(n)}(t)\) \ (F (s) =\ mathcal {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) dt\) ">\(s^{n}G(s)-s^{n-1}g(0)-\cdots -g^{(n-1)}(0)\)
    \ (f (t)\) ">\((f\ast g)(t)=\int_{0}^{t} f(\tau )g(t-\tau )d\tau \) \ (F (s) =\ mathcal {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) dt\) ">\(F(s)G(s)\)
    \ (f (t)\) ">\(tf(t)\) \ (F (s) =\ mathcal {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) dt\) ">\(-F'(s)\)
    \ (f (t)\) ">\(t^{n}f(t)\) \ (F (s) =\ mathcal {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) dt\) ">\((-1)^{n}F^{(n)}(s)\)
    \ (f (t)\) ">\(\int_{0}^{t}f(\tau )d\tau \) \ (F (s) =\ mathcal {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) dt\) ">\(\frac{1}{s}F(s)\)
    \ (f (t)\) ">\(\frac{f(t)}{t}\) \ (F (s) =\ mathcal {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) dt\) ">\(\int_{s}^{\infty} F(\sigma )d\sigma\)

    Apéndice B: Tabla de Transformaciones de Laplace is shared under a CC BY-SA 1.3 license and was authored, remixed, and/or curated by LibreTexts.