Saltar al contenido principal
LibreTexts Español

8.5E: Ecuaciones de Coeficiente Constante con Funciones de Forzado Continuo por Puntas (Ejercicios

  • Page ID
    114889
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Q8.5.1

    En Ejercicios 8.5.1-8.5.20 utilizar la transformada de Laplace para resolver el problema de valor inicial. Grafique la solución para los Ejercicios 8.5.6, 8.5.9, 8.5.13 y 8.5.19.

    1. \(y''+y=\left\{\begin{array}{cl} 3,& 0\le t<\pi,\\[4pt] 0,&t\ge\pi,\end{array}\right. \qquad y(0)=0, \quad y'(0)=0\)

    2. \(y''+y=\left\{\begin{array}{cl} 3,&0\le t<4,\\; 2t-5,&t > 4,\end{array}\right.\qquad y(0)=1,\quad y'(0)=0\)

    3. \(y''-2y'= \left\{\begin{array}{cl} 4,&0\le t<1,\\[4pt] 6,&t\ge 1,\end{array}\right.\qquad y(0)=-6,\quad y'(0)=1 \)

    4. \(y''-y=\left\{\begin{array}{cl} e^{2t},&0\le t< 2,\\[4pt] 1,&t\ge 2,\end{array}\right.\qquad y(0)=3,\quad y'(0)=-1 \)

    5. \(y''-3y'+2y= \left\{\begin{array}{rl} 0,&0\le t<1,\\[4pt] 1,&1\le t<2,\\[4pt]-1,&t\ge 2, \end{array}\right.\qquad y(0)=-3,\quad y'(0)=1\)

    6. \(y''+4y= \left\{\begin{array}{cl}|\sin t|,&0\le t<2\pi,\\[4pt] 0,&t\ge 2\pi,\end{array}\right.\qquad y(0)=-3,\quad y'(0)=1\)

    7. \(y''-5y'+4y= \left\{\begin{array}{rl} 1,&0\le t<1\\[4pt] -1,&1\le t<2,\\[4pt] 0,&t\ge 2,\end{array}\right.\qquad y(0)=3,\quad y'(0)=-5\)

    8. \(y''+9y=\left\{\begin{array}{ll}{\cos t,}&{0\leq t<\frac{3\pi }{2},}\\{\sin t,}&{t\geq \frac{3\pi }{2},} \end{array} \right. \quad y(0)=0,\: y'(0)=0 \)

    9. \(y''+4y=\left\{\begin{array}{ll}{t,}&{0\leq t<\frac{\pi }{2},}\\{\pi ,}&{t\geq \frac{\pi }{2},} \end{array} \right. \quad y(0)=0,\: y'(0)=0 \)

    10. \(y''+y=\left\{\begin{array}{cl}\phantom{-}t,&0\le t<\pi, \\[4pt]-t,&t\ge\pi ,\end{array}\right.\; y(0)=0,\; y'(0)=0\)

    11. \(y''-3y'+2y=\left\{\begin{array}{cl} 0,&0\le t<2,\\2t-4,&t\ge 2,\end{array}\right. ,\quad y(0)=0,\quad y'(0)=0\)

    12. \(y''+y=\left\{\begin{array}{cl} t,&0\le t<2\pi,\\-2t,&t\ge 2\pi,\end{array}\right.\quad y(0)=1,\quad y'(0)=2\)

    13. \(y''+3y'+2y=\left\{\begin{array}{cl}\phantom{-}1,&0\le t<2,\\-1,&t\ge 2,\end{array}\right.\; y(0)=0,\; y'(0)=0\)

    14. \(y''-4y'+3y=\left\{\begin{array}{cl}-1,&0\le t<1,\\\phantom{-}1,&t\ge 1,\end{array}\right.\; y(0)=0,\; y'(0)=0\)

    15. \(y''+2y'+y=\left\{\begin{array}{cl} e^t,&0\le t<1,\\e^t-1,&t\ge 1,\end{array}\right.\; y(0)=3,\; y'(0)=-1\)

    16. \(y''+2y'+y=\left\{\begin{array}{cl} 4e^t,&0\le t<1,\\0,&t\ge 1,\end{array}\right.\; y(0)=0,\; y'(0)=0\)

    17. \(y''+3y'+2y=\left\{\begin{array}{cl} e^{-t},&0\le t<1,\\0,&t\ge 1,\end{array}\right.\; y(0)=1,\; y'(0)=-1\)

    18. \(y''-4y'+4y=\left\{\begin{array}{rl} e^{2t},&0\le t<2,\\-e^{2t},&t\ge 2,\end{array}\right.\; y(0)=0,\; y'(0)=-1\)

    19. \(y''=\left\{\begin{array}{cl}t^2,&0\le t<1,\\-t,&1\le t<2,\\t+1,&t\ge 2,\end{array}\right.\; y(0)=1,\; y'(0)=0\)

    20. \(y''+2y'+2y=\left\{\begin{array}{rl}1,&0\le t<2\pi,\\t,&2\pi\le t<3\pi,\\-1,&t\ge 3\pi,\end{array}\right.\; y(0)=2,\quad y'(0)=-1\)

    Q8.5.2

    21. Resolver el problema de valor inicial\[y''=f(t), \quad y(0)=0,\quad y'(0)=0,\nonumber \] donde\[f(t)=m+1,\quad m\le t<m+1,\quad m=0,1,2,\dots.\nonumber \]

    22. Resolver el problema de valor inicial dado y encontrar una fórmula que no implique funciones de paso y que represente\(y\) en cada intervalo de continuidad de\(f\).

    1. \(y''+y=f(t), \quad y(0)=0,\quad y'(0)=0\);
      \(f(t)=m+1,\quad m\pi\le t<(m+1)\pi,\quad m=0,1,2,\dots\).
    2. \(y''+y=f(t), \quad y(0)=0,\quad y'(0)=0\);
      \(f(t)=(m+1)t, \quad 2m\pi\le t<2(m+1)\pi,\quad m=0,1,2,\dots\) HINTA: Necesitarás la fórmula\[1+2+\cdots+m={m(m+1)\over2}.\nonumber \]
    3. \(y''+y=f(t), \quad y(0)=0,\quad y'(0)=0\);
      \(f(t)=(-1)^m,\quad m\pi\le t<(m+1)\pi,\quad m=0,1,2,\dots.\)
    4. \(y''-y=f(t), \quad y(0)=0,\quad y'(0)=0\);
      \(f(t)=m+1,\quad m\le t<(m+1),\quad m=0,1,2,\dots.\)
      HINTA: Necesitarás la fórmula\[1+r+...+r^{m}=\frac{1-r^{m+1}}{1-r}(r\neq 1).\nonumber \]
    5. \(y''+2y'+2y=f(t), \quad y(0)=0,\quad y'(0)=0\);
      \(f(t)=(m+1)(\sin t+2\cos t),\quad 2m\pi\le t<2(m+1)\pi,\quad m=0,1,2,\dots.\)
      (Ver la pista en d.)
    6. \(y''-3y'+2y=f(t), \quad y(0)=0,\quad y'(0)=0\);
    7. \(f(t)=m+1,\quad m\le t<m+1,\quad m=0,1,2,\dots.\)
      (Ver las pistas en b y d.)

    23.

    1. Dejar\(g\) ser continuo\((\alpha,\beta)\) y diferenciable en el\((\alpha,t_0)\) y\((t_0,\beta)\). Supongamos\(A=\lim_{t\to t_0-}g'(t)\) y\(B=\lim_{t\to t_0+}g'(t)\) ambos existen. Usa el teorema del valor medio para mostrar que\[\lim_{t\to t_0-}{g(t)-g(t_0)\over t-t_0}=A\quad\mbox{ and }\quad \lim_{t\to t_0+}{g(t)-g(t_0)\over t-t_0}=B.\nonumber \]
    2. Concluir de (a) que\(g'(t_0)\) existe y\(g'\) es continuo en\(t_0\) si\(A=B\).
    3. Concluir de (a) que si\(g\) es diferenciable en\((\alpha,\beta)\) entonces no\(g'\) puede tener una discontinuidad de salto encendido\((\alpha,\beta)\).

    24.

    1. Dejar\(a\),\(b\), y\(c\) ser constantes, con\(a\ne0\). Dejar\(f\) ser continuo por tramos en un intervalo\((\alpha,\beta)\), con una sola discontinuidad de salto en un punto de\(t_0\) entrada\((\alpha,\beta)\). Supongamos\(y\) y\(y'\) son continuos encendido\((\alpha,\beta)\) y\(y''\) encendido\((\alpha,t_0)\) y\((t_0,\beta)\). Supongamos también que\[ay''+by'+cy=f(t) \tag{A}\] en\((\alpha,t_0)\) y\((t_0,\beta)\). Demostrar que\[y''(t_0+)-y''(t_0-)={f(t_0+)-f(t_0-)\over a}\ne0.\nonumber \]
    2. Use (a) y Ejercicio 8.5.23c para mostrar que (A) no tiene soluciones en ningún intervalo\((\alpha,\beta)\) que contenga una discontinuidad de salto de\(f\).

    25. Supongamos\(P_0,P_1\), y\(P_2\) son continuos y no\(P_0\) tiene ceros en un intervalo abierto\((a,b)\), y eso\(F\) tiene una discontinuidad de salto en un punto\(t_0\) en\((a,b)\). Demostrar que la ecuación diferencial no\[P_0(t)y''+P_1(t)y'+P_2(t)y=F(t)\nonumber \] tiene soluciones sobre\((a,b)\). HINTA: Generalizar el resultado del Ejercicio 8.5.24 y usar Ejercicio 8.5.23c.

    26. Vamos\(0=t_0<t_1<\cdots <t_n\). Supongamos que\(f_m\) es continuo en\([t_m,\infty)\) para\(m=1,\dots,n\). Vamos\[f(t)= \left\{\begin{array}{cl} f_m(t),&t_m\le t< t_{m+1},\quad m=1,\dots,n-1,\\ f_n(t),&t\ge t_n. \end{array}\right.\nonumber \] Demostrar que la solución de

    \[ay''+by'+cy=f(t), \quad y(0)=k_0,\quad y'(0)=k_1,\nonumber \]

    como se define a continuación Teorema 8.5.1, viene dado por

    \[y=\left\{\begin{array}{cl} z_0(t),&0\le t<t_1,\\[4pt] z_0(t)+ z_1(t),&t_1\le t<t_2,\\ &\vdots\\ z_0+\cdots+z_{n-1}(t),&t_{n-1}\le t<t_n,\\[4pt] z_0+\cdots+ z_n(t),&t\ge t_n, \end{array}\right.\nonumber \]

    donde\(z_0\) esta la solución de

    \[az''+bz'+cz=f_0(t), \quad z(0)=k_0,\quad z'(0)=k_1\nonumber \]

    y\(z_m\) es la solución de

    \[az''+bz'+cz=f_m(t)-f_{m-1}(t), \quad z(t_m)=0,\quad z'(t_m)=0\nonumber \]

    para\(m=1,\dots,n\).


    This page titled 8.5E: Ecuaciones de Coeficiente Constante con Funciones de Forzado Continuo por Puntas (Ejercicios is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by William F. Trench via source content that was edited to the style and standards of the LibreTexts platform.