8.5E: Ecuaciones de Coeficiente Constante con Funciones de Forzado Continuo por Puntas (Ejercicios
- Page ID
- 114889
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Q8.5.1
En Ejercicios 8.5.1-8.5.20 utilizar la transformada de Laplace para resolver el problema de valor inicial. Grafique la solución para los Ejercicios 8.5.6, 8.5.9, 8.5.13 y 8.5.19.
1. \(y''+y=\left\{\begin{array}{cl} 3,& 0\le t<\pi,\\[4pt] 0,&t\ge\pi,\end{array}\right. \qquad y(0)=0, \quad y'(0)=0\)
2. \(y''+y=\left\{\begin{array}{cl} 3,&0\le t<4,\\; 2t-5,&t > 4,\end{array}\right.\qquad y(0)=1,\quad y'(0)=0\)
3. \(y''-2y'= \left\{\begin{array}{cl} 4,&0\le t<1,\\[4pt] 6,&t\ge 1,\end{array}\right.\qquad y(0)=-6,\quad y'(0)=1 \)
4. \(y''-y=\left\{\begin{array}{cl} e^{2t},&0\le t< 2,\\[4pt] 1,&t\ge 2,\end{array}\right.\qquad y(0)=3,\quad y'(0)=-1 \)
5. \(y''-3y'+2y= \left\{\begin{array}{rl} 0,&0\le t<1,\\[4pt] 1,&1\le t<2,\\[4pt]-1,&t\ge 2, \end{array}\right.\qquad y(0)=-3,\quad y'(0)=1\)
6. \(y''+4y= \left\{\begin{array}{cl}|\sin t|,&0\le t<2\pi,\\[4pt] 0,&t\ge 2\pi,\end{array}\right.\qquad y(0)=-3,\quad y'(0)=1\)
7. \(y''-5y'+4y= \left\{\begin{array}{rl} 1,&0\le t<1\\[4pt] -1,&1\le t<2,\\[4pt] 0,&t\ge 2,\end{array}\right.\qquad y(0)=3,\quad y'(0)=-5\)
8. \(y''+9y=\left\{\begin{array}{ll}{\cos t,}&{0\leq t<\frac{3\pi }{2},}\\{\sin t,}&{t\geq \frac{3\pi }{2},} \end{array} \right. \quad y(0)=0,\: y'(0)=0 \)
9. \(y''+4y=\left\{\begin{array}{ll}{t,}&{0\leq t<\frac{\pi }{2},}\\{\pi ,}&{t\geq \frac{\pi }{2},} \end{array} \right. \quad y(0)=0,\: y'(0)=0 \)
10. \(y''+y=\left\{\begin{array}{cl}\phantom{-}t,&0\le t<\pi, \\[4pt]-t,&t\ge\pi ,\end{array}\right.\; y(0)=0,\; y'(0)=0\)
11. \(y''-3y'+2y=\left\{\begin{array}{cl} 0,&0\le t<2,\\2t-4,&t\ge 2,\end{array}\right. ,\quad y(0)=0,\quad y'(0)=0\)
12. \(y''+y=\left\{\begin{array}{cl} t,&0\le t<2\pi,\\-2t,&t\ge 2\pi,\end{array}\right.\quad y(0)=1,\quad y'(0)=2\)
13. \(y''+3y'+2y=\left\{\begin{array}{cl}\phantom{-}1,&0\le t<2,\\-1,&t\ge 2,\end{array}\right.\; y(0)=0,\; y'(0)=0\)
14. \(y''-4y'+3y=\left\{\begin{array}{cl}-1,&0\le t<1,\\\phantom{-}1,&t\ge 1,\end{array}\right.\; y(0)=0,\; y'(0)=0\)
15. \(y''+2y'+y=\left\{\begin{array}{cl} e^t,&0\le t<1,\\e^t-1,&t\ge 1,\end{array}\right.\; y(0)=3,\; y'(0)=-1\)
16. \(y''+2y'+y=\left\{\begin{array}{cl} 4e^t,&0\le t<1,\\0,&t\ge 1,\end{array}\right.\; y(0)=0,\; y'(0)=0\)
17. \(y''+3y'+2y=\left\{\begin{array}{cl} e^{-t},&0\le t<1,\\0,&t\ge 1,\end{array}\right.\; y(0)=1,\; y'(0)=-1\)
18. \(y''-4y'+4y=\left\{\begin{array}{rl} e^{2t},&0\le t<2,\\-e^{2t},&t\ge 2,\end{array}\right.\; y(0)=0,\; y'(0)=-1\)
19. \(y''=\left\{\begin{array}{cl}t^2,&0\le t<1,\\-t,&1\le t<2,\\t+1,&t\ge 2,\end{array}\right.\; y(0)=1,\; y'(0)=0\)
20. \(y''+2y'+2y=\left\{\begin{array}{rl}1,&0\le t<2\pi,\\t,&2\pi\le t<3\pi,\\-1,&t\ge 3\pi,\end{array}\right.\; y(0)=2,\quad y'(0)=-1\)
Q8.5.2
21. Resolver el problema de valor inicial\[y''=f(t), \quad y(0)=0,\quad y'(0)=0,\nonumber \] donde\[f(t)=m+1,\quad m\le t<m+1,\quad m=0,1,2,\dots.\nonumber \]
22. Resolver el problema de valor inicial dado y encontrar una fórmula que no implique funciones de paso y que represente\(y\) en cada intervalo de continuidad de\(f\).
- \(y''+y=f(t), \quad y(0)=0,\quad y'(0)=0\);
\(f(t)=m+1,\quad m\pi\le t<(m+1)\pi,\quad m=0,1,2,\dots\). - \(y''+y=f(t), \quad y(0)=0,\quad y'(0)=0\);
\(f(t)=(m+1)t, \quad 2m\pi\le t<2(m+1)\pi,\quad m=0,1,2,\dots\) HINTA: Necesitarás la fórmula\[1+2+\cdots+m={m(m+1)\over2}.\nonumber \] - \(y''+y=f(t), \quad y(0)=0,\quad y'(0)=0\);
\(f(t)=(-1)^m,\quad m\pi\le t<(m+1)\pi,\quad m=0,1,2,\dots.\) - \(y''-y=f(t), \quad y(0)=0,\quad y'(0)=0\);
\(f(t)=m+1,\quad m\le t<(m+1),\quad m=0,1,2,\dots.\)
HINTA: Necesitarás la fórmula\[1+r+...+r^{m}=\frac{1-r^{m+1}}{1-r}(r\neq 1).\nonumber \] - \(y''+2y'+2y=f(t), \quad y(0)=0,\quad y'(0)=0\);
\(f(t)=(m+1)(\sin t+2\cos t),\quad 2m\pi\le t<2(m+1)\pi,\quad m=0,1,2,\dots.\)
(Ver la pista en d.) - \(y''-3y'+2y=f(t), \quad y(0)=0,\quad y'(0)=0\);
- \(f(t)=m+1,\quad m\le t<m+1,\quad m=0,1,2,\dots.\)
(Ver las pistas en b y d.)
23.
- Dejar\(g\) ser continuo\((\alpha,\beta)\) y diferenciable en el\((\alpha,t_0)\) y\((t_0,\beta)\). Supongamos\(A=\lim_{t\to t_0-}g'(t)\) y\(B=\lim_{t\to t_0+}g'(t)\) ambos existen. Usa el teorema del valor medio para mostrar que\[\lim_{t\to t_0-}{g(t)-g(t_0)\over t-t_0}=A\quad\mbox{ and }\quad \lim_{t\to t_0+}{g(t)-g(t_0)\over t-t_0}=B.\nonumber \]
- Concluir de (a) que\(g'(t_0)\) existe y\(g'\) es continuo en\(t_0\) si\(A=B\).
- Concluir de (a) que si\(g\) es diferenciable en\((\alpha,\beta)\) entonces no\(g'\) puede tener una discontinuidad de salto encendido\((\alpha,\beta)\).
24.
- Dejar\(a\),\(b\), y\(c\) ser constantes, con\(a\ne0\). Dejar\(f\) ser continuo por tramos en un intervalo\((\alpha,\beta)\), con una sola discontinuidad de salto en un punto de\(t_0\) entrada\((\alpha,\beta)\). Supongamos\(y\) y\(y'\) son continuos encendido\((\alpha,\beta)\) y\(y''\) encendido\((\alpha,t_0)\) y\((t_0,\beta)\). Supongamos también que\[ay''+by'+cy=f(t) \tag{A}\] en\((\alpha,t_0)\) y\((t_0,\beta)\). Demostrar que\[y''(t_0+)-y''(t_0-)={f(t_0+)-f(t_0-)\over a}\ne0.\nonumber \]
- Use (a) y Ejercicio 8.5.23c para mostrar que (A) no tiene soluciones en ningún intervalo\((\alpha,\beta)\) que contenga una discontinuidad de salto de\(f\).
25. Supongamos\(P_0,P_1\), y\(P_2\) son continuos y no\(P_0\) tiene ceros en un intervalo abierto\((a,b)\), y eso\(F\) tiene una discontinuidad de salto en un punto\(t_0\) en\((a,b)\). Demostrar que la ecuación diferencial no\[P_0(t)y''+P_1(t)y'+P_2(t)y=F(t)\nonumber \] tiene soluciones sobre\((a,b)\). HINTA: Generalizar el resultado del Ejercicio 8.5.24 y usar Ejercicio 8.5.23c.
26. Vamos\(0=t_0<t_1<\cdots <t_n\). Supongamos que\(f_m\) es continuo en\([t_m,\infty)\) para\(m=1,\dots,n\). Vamos\[f(t)= \left\{\begin{array}{cl} f_m(t),&t_m\le t< t_{m+1},\quad m=1,\dots,n-1,\\ f_n(t),&t\ge t_n. \end{array}\right.\nonumber \] Demostrar que la solución de
\[ay''+by'+cy=f(t), \quad y(0)=k_0,\quad y'(0)=k_1,\nonumber \]
como se define a continuación Teorema 8.5.1, viene dado por
\[y=\left\{\begin{array}{cl} z_0(t),&0\le t<t_1,\\[4pt] z_0(t)+ z_1(t),&t_1\le t<t_2,\\ &\vdots\\ z_0+\cdots+z_{n-1}(t),&t_{n-1}\le t<t_n,\\[4pt] z_0+\cdots+ z_n(t),&t\ge t_n, \end{array}\right.\nonumber \]
donde\(z_0\) esta la solución de
\[az''+bz'+cz=f_0(t), \quad z(0)=k_0,\quad z'(0)=k_1\nonumber \]
y\(z_m\) es la solución de
\[az''+bz'+cz=f_m(t)-f_{m-1}(t), \quad z(t_m)=0,\quad z'(t_m)=0\nonumber \]
para\(m=1,\dots,n\).