7.3: Función Gamma
- Page ID
- 118912
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Otra función que suele ocurrir en el estudio de funciones especiales es la función Gamma. Necesitaremos la función Gamma en la siguiente sección sobre funciones de Bessel.
Porque\(x>0\) definimos la función Gamma como
\[\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} d t, \quad x>0 \label{7.36} \]
La función Gamma es una generalización de la función factorial. De hecho, tenemos
\[\Gamma(1)=1 \nonumber \]
y
\[\Gamma(x+1)=x \Gamma(x). \nonumber \]
El lector puede probar esta identidad simplemente realizando una integración por partes. (Ver Problema 7.7.) En particular, para los enteros\(n \in Z^{+}\), entonces tenemos
\[\Gamma(n+1)=n \Gamma(n)=n(n-1) \Gamma(n-2)=n(n-1) \cdots 2 \Gamma(1)=n !. \nonumber \]
También podemos definir la función Gamma para valores negativos, no enteros de\(x\). Primero notamos que por iteración en\(n \in Z^{+}\), tenemos
\[\Gamma(x+n)=(x+n-1) \cdots(x+1) x \Gamma(x), \quad x<0, \quad x+n>0 \text {. } \nonumber \]
Resolviendo para\(\Gamma(x)\), luego encontramos
\[\Gamma(x)=\dfrac{\Gamma(x+n)}{(x+n-1) \cdots(x+1) x}, \quad-n<x<0 \nonumber \]
Tenga en cuenta que la función Gamma no está definida en cero y los enteros negativos.
\[\Gamma\left(\dfrac{1}{2}\right)=\sqrt{\pi} . \nonumber \]
Esto se hace por cómputo directo de la integral:
\[\Gamma\left(\dfrac{1}{2}\right)=\int_{0}^{\infty} t^{-\dfrac{1}{2}} e^{-t} d t \nonumber \]
Dejando\(t=z^{2}\), tenemos
\[\Gamma\left(\dfrac{1}{2}\right)=2 \int_{0}^{\infty} e^{-z^{2}} d z \nonumber \]
Debido a la simetría del integrando, obtenemos la integral clásica
\[\Gamma\left(\dfrac{1}{2}\right)=\int_{-\infty}^{\infty} e^{-z^{2}} d z \nonumber \]
que se puede realizar usando un truco estándar. Considerar la integral
\[I=\int_{-\infty}^{\infty} e^{-x^{2}} d x \nonumber \]
Entonces,
\[I^{2}=\int_{-\infty}^{\infty} e^{-x^{2}} d x \int_{-\infty}^{\infty} e^{-y^{2}} d y \nonumber \]
Tenga en cuenta que cambiamos la variable de integración. Esto nos permitirá escribir este producto de integrales como una doble integral:
\[I^{2}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y . \nonumber \]
Esta es una integral en todo el\(x y\) plano. Podemos transformar esta integración cartesiana en una integración sobre coordenadas polares. La integral se convierte
\[I^{2}=\int_{0}^{2 \pi} \int_{0}^{\infty} e^{-r^{2}} r d r d \theta \nonumber \]
Esto es sencillo de integrar y tenemos\(I^{2}=\pi\). Entonces, el resultado final se encuentra tomando la raíz cuadrada de ambos lados:
\[\Gamma\left(\dfrac{1}{2}\right)=I=\sqrt{\pi} . \nonumber \]
Hemos visto que la función factorial se puede escribir en términos de funciones Gamma. Se pueden escribir las factoriales dobles pares e impares como
\[(2 n) ! !=2^{n} n !, \quad(2 n+1) ! !=\dfrac{(2 n+1) !}{2^{n} n !} \nonumber \]
En particular, se puede escribir
\[\Gamma\left(n+\dfrac{1}{2}\right)=\dfrac{(2 n-1) ! !}{2^{n}} \sqrt{\pi} . \nonumber \]
Otra relación útil, que sólo declaramos, es
\[\Gamma(x) \Gamma(1-x)=\dfrac{\pi}{\sin \pi x} . \nonumber \]