8.4: Bisectores angulares
- Page ID
- 114486
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Si\(\measuredangle ABX \equiv - \measuredangle CBX\), entonces decimos que la línea\((BX)\) bisecta\(\angle ABC\), o la línea\((BX)\) es una bisectriz de\(\angle ABC\). Si\(\measuredangle ABX \equiv \pi - \measuredangle CBX\), entonces la línea\((BX)\) se llama la bisectriz externa de\(\angle ABC\).
Si\(\measuredangle ABA' = \pi\); es decir, si\(B\) yace entre\(A\) y\(A'\), entonces la bisectriz de\(\angle ABC\) es la\(\angle A'BC\) bisectriz externa de y al revés.
Tenga en cuenta que la bisectriz y la bisectriz externa están definidas de manera única por el ángulo
Mostrar que para cualquier ángulo, su bisectriz y bisectriz externa son perpendiculares.
- Sugerencia
-
Dejar\((BX)\) y\((BY)\) ser los bisectores internos y externos de\(\angle ABC\). Entonces
\(2 \cdot \measuredangle XBY \equiv 2 \cdot \measuredangle XBA + 2 \cdot \measuredangle ABY \equiv \measuredangle CBA + \pi + 2 \cdot \measuredangle ABC \equiv \pi + \measuredangle CBC = \pi\)
y de ahí el resultado.
Los bisectores de\(\angle ABC\)\(\angle BCA\),, y\(\angle CAB\) de un triángulo no degenerado\(ABC\) se llaman bisectores del triángulo\(ABC\) en los vértices\(A, B\), y\(C\) respectivamente.
Dejar\(\triangle ABC\) ser un triángulo no degenerado. Supongamos que la bisectriz en el vértice\(A\) se cruza con el lado\([BC]\) en el punto\(D\). Entonces
\[\dfrac{AB}{AC} = \dfrac{DB}{DC}.\]
- Prueba
-
Dejar\(\ell\) ser una línea que pasa a través\(C\) que es paralela a\((AB)\). Tenga en cuenta que\(\ell \nparallel (AD)\); establecer
\(E = \ell \cap (AD)\).
También tenga en cuenta que\(B\) y\(C\) se encuentran en lados opuestos de\((AD)\). Por lo tanto, por la propiedad transversal (Teorema 7.3.1),
\[\measuredangle BAD = \measuredangle CED.\]
Además, los ángulos\(ADB\) y\(EDC\) son verticales; en particular, por la Proposición 2.5.1
\(\measuredangle ADB = \measuredangle EDC.\)
Por la condición de similitud AA,\(\triangle ABD \sim \triangle ECD\). En particular,
\[\dfrac{AB}{EC} = \dfrac{DB}{DC}.\]
Desde\((AD)\) bisectas\(\angle BAC\), eso lo conseguimos\(\measuredangle BAD = \measuredangle DAC\). Junto con 8.4.2, implica eso\(\measuredangle CEA = \measuredangle EAC\). Por Teorema 4.3.1,\(\triangle ACE\) es isósceles; es decir,
\(EC = AC.\)
Junto con 8.4.3, implica 8.4.1.
Formular y probar un análogo de Lema\(\PageIndex{1}\) para la bisectriz externa.
- Sugerencia
-
Si\(E\) es el punto de intersección de\((BC)\) con la bisectriz externa de\(\angle BAC\), entonces\(\dfrac{AB}{AC} = \dfrac{EB}{EC}\). Se puede probar en la misma línea que Lemma\(\PageIndex{1}\).