7.5E: Ejercicios para la Sección 7.5
- Page ID
- 116369
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Utilice una tabla de integrales para evaluar las siguientes integrales.
1)\(\displaystyle ∫_0^4\frac{x}{\sqrt{1+2x}}\,dx\)
2)\(\displaystyle ∫\frac{x+3}{x^2+2x+2}\,dx\)
- Contestar
- \(\displaystyle ∫\frac{x+3}{x^2+2x+2}\,dx = \tfrac{1}{2}\ln |x^2+2x+2|+2\arctan(x+1)+C\)
3)\(\displaystyle ∫x^3\sqrt{1+2x^2}\,dx\)
4)\(\displaystyle ∫\frac{1}{\sqrt{x^2+6x}}\,dx\)
- Contestar
- \(\displaystyle ∫\frac{1}{\sqrt{x^2+6x}}\,dx = \cosh^{−1}\left(\frac{x+3}{3}\right)+C\)
5)\(\displaystyle ∫\frac{x}{x+1}\,dx\)
6)\(\displaystyle ∫x⋅2^{x^2}\,dx\)
- Contestar
- \(\displaystyle ∫x⋅2^{x^2}\,dx = \frac{2^{x^2−1}}{\ln 2}+C\)
7)\(\displaystyle ∫\frac{1}{4x^2+25}\,dx\)
8)\(\displaystyle ∫\frac{dy}{\sqrt{4−y^2}}\)
- Contestar
- \(\displaystyle ∫\frac{dy}{\sqrt{4−y^2}} = \arcsin\left(\frac{y}{2}\right)+C\)
9)\(\displaystyle ∫\sin^3(2x)\cos(2x)\,dx\)
10)\(\displaystyle ∫\csc(2w)\cot(2w)\,dw\)
- Contestar
- \(\displaystyle ∫\csc(2w)\cot(2w)\,dw = −\tfrac{1}{2}\csc(2w)+C\)
11)\(\displaystyle ∫2^y\,dy\)
12)\(\displaystyle ∫^1_0\frac{3x}{\sqrt{x^2+8}}\,dx\)
- Contestar
- \(\displaystyle ∫^1_0\frac{3x}{\sqrt{x^2+8}}\,dx = 9−6\sqrt{2}\)
13)\(\displaystyle ∫^{1/4}_{−1/4}\sec^2(πx)\tan(πx)\,dx\)
14)\(\displaystyle ∫^{π/2}_0\tan^2\left(\frac{x}{2}\right)\,dx\)
- Contestar
- \(\displaystyle ∫^{π/2}_0\tan^2\left(\frac{x}{2}\right)\,dx = 2−\frac{π}{2}\)
15)\(\displaystyle ∫\cos^3x\,dx\)
16)\(\displaystyle ∫\tan^5(3x)\,dx\)
- Contestar
- \(\displaystyle ∫\tan^5(3x)\,dx = \tfrac{1}{12}\tan^4(3x)−\tfrac{1}{6}\tan^2(3x)+\tfrac{1}{3}\ln|\sec 3x|+C\)
17)\(\displaystyle ∫\sin^2y\cos^3y\,dy\)
Utilice un CAS para evaluar las siguientes integrales. También se pueden usar tablas para verificar las respuestas.
18) [T]\(\displaystyle ∫\frac{dw}{1+\sec\left(\frac{w}{2}\right)}\)
- Contestar
- \(\displaystyle ∫\frac{dw}{1+\sec\left(\frac{w}{2}\right)} = 2\cot\left(\tfrac{w}{2}\right)−2\csc\left(\tfrac{w}{2}\right)+w+C\)
19) [T]\(\displaystyle ∫\frac{dw}{1−\cos(7w)}\)
20) [T]\(\displaystyle ∫^t_0\frac{dt}{4\cos t+3\sin t}\)
- Contestar
- \(\displaystyle ∫^t_0\frac{dt}{4\cos t+3\sin t} = \tfrac{1}{5}\ln\Big|\frac{2(5+4\sin t−3\cos t)}{4\cos t+3\sin t}\Big|\)
21) [T]\(\displaystyle ∫\frac{\sqrt{x^2−9}}{3x}\,dx\)
22) [T]\(\displaystyle ∫\frac{dx}{x^{1/2}+x^{1/3}}\)
- Contestar
- \(\displaystyle ∫\frac{dx}{x^{1/2}+x^{1/3}} = 6x^{1/6}−3x^{1/3}+2\sqrt{x}−6\ln[1+x^{1/6}]+C\)
23) [T]\(\displaystyle ∫\frac{dx}{x\sqrt{x−1}}\)
24) [T]\(\displaystyle ∫x^3\sin x\,dx\)
- Contestar
- \(\displaystyle ∫x^3\sin x\,dx = −x^3\cos x+3x^2\sin x+6x\cos x−6\sin x+C\)
25) [T]\(\displaystyle ∫x\sqrt{x^4−9}\,dx\)
26) [T]\(\displaystyle ∫\frac{x}{1+e^{−x^2}}\,dx\)
- Contestar
- \(\displaystyle ∫\frac{x}{1+e^{−x^2}}\,dx = \tfrac{1}{2}\left(x^2+\ln|1+e^{−x^2}|\right)+C\)
27) [T]\(\displaystyle ∫\frac{\sqrt{3−5x}}{2x}\,dx\)
28) [T]\(\displaystyle ∫\frac{dx}{x\sqrt{x−1}}\)
- Contestar
- \(\displaystyle ∫\frac{dx}{x\sqrt{x−1}} = 2\arctan\big(\sqrt{x−1}\big)+C\)
29) [T]\(\displaystyle ∫e^x\cos^{−1}(e^x)\,dx\)
Utilice una calculadora o CAS para evaluar las siguientes integrales.
30) [T]\(\displaystyle ∫^{π/4}_0\cos 2x \, dx\)
- Contestar
- \(\displaystyle ∫^{π/4}_0\cos 2x \, dx = 0.5=\frac{1}{2}\)
31) [T]\(\displaystyle ∫^1_0x⋅e^{−x^2}\,dx\)
32) [T]\(\displaystyle ∫^8_0\frac{2x}{\sqrt{x^2+36}}\,dx\)
- Contestar
- \(\displaystyle ∫^8_0\frac{2x}{\sqrt{x^2+36}}\,dx = 8.0\)
33) [T]\(\displaystyle ∫^{2/\sqrt{3}}_0\frac{1}{4+9x^2}\,dx\)
34) [T]\(\displaystyle ∫\frac{dx}{x^2+4x+13}\)
- Contestar
- \(\displaystyle ∫\frac{dx}{x^2+4x+13} = \tfrac{1}{3}\arctan\left(\tfrac{1}{3}(x+2)\right)+C\)
35) [T]\(\displaystyle ∫\frac{dx}{1+\sin x}\)
Usa tablas para evaluar las integrales. Es posible que deba completar el cuadrado o cambiar las variables para poner la integral en una forma dada en la tabla.
36)\(\displaystyle ∫\frac{dx}{x^2+2x+10}\)
- Contestar
- \(\displaystyle ∫\frac{dx}{x^2+2x+10} = \tfrac{1}{3}\arctan\left(\frac{x+1}{3}\right)+C\)
37)\(\displaystyle ∫\frac{dx}{\sqrt{x^2−6x}}\)
38)\(\displaystyle ∫\frac{e^x}{\sqrt{e^{2x}−4}}\,dx\)
- Contestar
- \(\displaystyle ∫\frac{e^x}{\sqrt{e^{2x}−4}}\,dx = \ln\left(e^x+\sqrt{4+e^{2x}}\right)+C\)
39)\(\displaystyle ∫\frac{\cos x}{\sin^2x+2\sin x}\,dx\)
40)\(\displaystyle ∫\frac{\arctan(x^3)}{x^4}\,dx\)
- Contestar
- \(\displaystyle ∫\frac{\arctan(x^3)}{x^4}\,dx = \ln x−\tfrac{1}{6}\ln(x^6+1)−\frac{\arctan(x^3)}{3x^3}+C\)
41)\(\displaystyle ∫\frac{\ln|x|\arcsin\left(\ln|x|\right)}{x}\,dx\)
Usar tablas para realizar la integración.
42)\(\displaystyle ∫\frac{dx}{\sqrt{x^2+16}}\)
- Contestar
- \(\displaystyle ∫\frac{dx}{\sqrt{x^2+16}} = \ln |x|+\sqrt{16+x^2}∣+C\)
43)\(\displaystyle ∫\frac{3x}{2x+7}\,dx\)
44)\(\displaystyle ∫\frac{dx}{1−\cos 4x}\)
- Contestar
- \(\displaystyle ∫\frac{dx}{1−\cos 4x} = −\frac{1}{4}\cot 2x+C\)
45)\(\displaystyle ∫\frac{dx}{\sqrt{4x+1}}\)
46) Encuentra el área delimitada por\(y(4+25x^2)=5,\;x=0,\;y=0,\) y\(x=4.\) Usa una tabla de integrales o un CAS.
- Contestar
- \(\frac{1}{2}\arctan 10\)unidades²
47) La región delimitada entre la curva\(y=\dfrac{1}{\sqrt{1+\cos x}}, \; 0.3≤x≤1.1,\) y el\(x\) eje -gira alrededor del\(x\) eje para generar un sólido. Utilice una tabla de integrales para encontrar el volumen del sólido generado. (Redondear la respuesta a dos decimales.)
48) Utilice la sustitución y una tabla de integrales para encontrar el área de la superficie generada al girar la curva\(y=e^x,\; 0≤x≤3,\) alrededor del\(x\) eje -eje. (Redondear la respuesta a dos decimales.)
- Contestar
- \(1276.14\)unidades²
49) [T] Utilice una tabla integral y una calculadora para encontrar el área de la superficie generada al girar la curva\(y=\dfrac{x^2}{2},\; 0≤x≤1,\) alrededor del\(x\) eje -eje. (Redondear la respuesta a dos decimales.)
50) [T] Utilice un CAS o tablas para encontrar el área de la superficie generada al girar la curva\(y=\cos x,\; 0≤x≤\frac{π}{2},\) alrededor del\(x\) eje. (Redondear la respuesta a dos decimales.)
- Contestar
- \(7.21\)unidades²
51) Encuentra la longitud de la curva\(y=\dfrac{x^2}{4}\) sobre\([0,8]\).
52) Encuentra la longitud de la curva\(y=e^x\) sobre\([0,\,\ln(2)].\)
- Contestar
- \(\left(\sqrt{5}−\sqrt{2}+\ln\Big|\frac{2+2\sqrt{2}}{1+\sqrt{5}}\Big|\right)\)unidades
53) Encontrar el área de la superficie formada girando la gráfica de\(y=2\sqrt{x}\) sobre el intervalo\([0,9]\) alrededor del\(x\) eje -eje.
54) Encuentra el valor promedio de la función\(f(x)=\dfrac{1}{x^2+1}\) a lo largo del intervalo\([−3,3].\)
- Contestar
- \(\frac{1}{3}\arctan(3)≈0.416\)
55) Aproximar la longitud del arco de la curva\(y=\tan πx\) a lo largo del intervalo\(\left[0,\frac{1}{4}\right]\). (Redondear la respuesta a tres decimales.)