Saltar al contenido principal
LibreTexts Español

15.4E: Ejercicios para la Sección 15.4

  • Page ID
    116273
    • Edwin “Jed” Herman & Gilbert Strang
    • OpenStax
    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    En los ejercicios 1 - 4, evalúe las integrales triples sobre la caja sólida rectangular\(B\).

    1. \(\displaystyle \iiint_B (2x + 3y^2 + 4z^3) \, dV,\)donde\(B = \big\{(x,y,z) \,|\, 0 \leq x \leq 1, \, 0 \leq y \leq 2, \, 0 \leq z \leq 3\big\}\)

    Responder
    \(192\)

    2. \(\displaystyle \iiint_B (xy + yz + xz) \, dV,\)donde\(B = \big\{(x,y,z) \,|\, 1 \leq x \leq 2, \, 0 \leq y \leq 2, \, 1 \leq z \leq 3\big\}\)

    3. \(\displaystyle \iiint_B (x \cos y + z) \, dV,\)donde\(B = \big\{(x,y,z) \,|\, 0 \leq x \leq 1, \, 0 \leq y \leq \pi, \, -1 \leq z \leq 1\big\}\)

    Responder
    \(0\)

    4. \(\displaystyle \iiint_B (z \sin x + y^2) \, dV,\)donde\(B = \big\{(x,y,z) \,|\, 0 \leq x \leq \pi, \, 0 \leq y \leq 1, \, -1 \leq z \leq 2\big\}\)

    En los ejercicios 5 a 8, cambiar el orden de integración integrando primero con respecto a\(z\), luego\(x\), después\(y\).

    5. \(\displaystyle \int_0^1 \int_1^2 \int_2^3 (x^2 + \ln y + z) \, dx \, dy \, dz\)

    Responder
    \(\displaystyle \int_0^1 \int_1^2 \int_2^3 (x^2 + \ln y + z) \, dx \, dy \, dz = \frac{35}{6} + 2 \ln 2\)

    6. \(\displaystyle \int_0^1 \int_{-1}^1 \int_0^3 (ze^x + 2y) \, dx \, dy \, dz\)

    7. \(\displaystyle \int_{-1}^2 \int_1^3 \int_0^4 \left(x^2z + \frac{1}{y}\right) \, dx \, dy \, dz\)

    Responder
    \(\displaystyle \int_{-1}^2 \int_1^3 \int_0^4 \left(x^2z + \frac{1}{y}\right) \, dx \, dy \, dz = 64 + 12 \ln 3\)

    8. \(\displaystyle \int_1^2 \int_{-2}^{-1} \int_0^1 \frac{x + y}{z} \, dx \, dy \, dz\)

    9. Dejar\(F\),\(G\), y\(H\) ser funciones continuas sobre\([a,b]\),\([c,d]\), y\([e,f]\), respectivamente, dónde\(a, \, b, \, c, \, d, \, e\), y\(f\) son números reales tales que\(a < b, \, c < d\), y\(e < f\). Demostrar que

    \[\int_a^b \int_c^d \int_e^f F (x) \, G (y) \, H(z) \, dz \, dy \, dx = \left(\int_a^b F(x) \, dx \right) \left(\int_c^d G(y) \, dy \right) \left(\int_e^f H(z) \, dz \right).\nonumber \]

    10. Dejar\(F\),\(G\), y\(H\) ser funciones diferenciales sobre\([a,b]\)\([c,d]\),, y\([e,f]\), respectivamente, dónde\(a, \, b, \, c, \, d, \, e\), y\(f\) son números reales tales que\(a < b, \, c < d\), y\(e < f\). Demostrar que

    \[\int_a^b \int_c^d \int_e^f F' (x) \, G' (y) \, H'(z) \, dz \, dy \, dx = [F (b) - F (a)] \, [G(d) - G(c)] \, H(f) - H(e)].\nonumber \]

    En los ejercicios 11 - 14, evaluar las triples integrales sobre la región delimitada

    \(E = \big\{(x,y,z) \,|\, a \leq x \leq b, \, h_1 (x) \leq y \leq h_2 (x), \, e \leq z \leq f \big\}.\)

    11. \(\displaystyle \iiint_E (2x + 5y + 7z) \, dV, \)donde\(E = \big\{(x,y,z) \,|\, 0 \leq x \leq 1, \, 0 \leq y \leq -x + 1, \, 1 \leq z \leq 2\big\}\)

    Responder
    \(\frac{77}{12}\)

    12. \(\displaystyle \iiint_E (y \ln x + z) \, dV,\)donde\(E = \big\{(x,y,z) \,|\, 1 \leq x \leq e, \, 0 \leq y \ln x, \, 0 \leq z \leq 1\big\}\)

    13. \(\displaystyle \iiint_E (\sin x + \sin y) \, dV,\)donde\(E = \big\{(x,y,z) \,|\, 0 \leq x \leq \frac{\pi}{2}, \, -\cos x \leq y \cos x, \, -1 \leq z \leq 1 \big\}\)

    Responder
    \(2\)

    14. \(\displaystyle \iiint_E (xy + yz + xz ) dV\)donde\(E = \big\{(x,y,z) \,|\, 0 \leq x \leq 1, \, -x^2 \leq y \leq x^2, \, 0 \leq z \leq 1 \big\}\)

    En los ejercicios 15 - 18, evaluar las triples integrales sobre la región delimitada indicada\(E\).

    15. \(\displaystyle \iiint_E (x + 2yz) \, dV,\)donde\(E = \big\{(x,y,z) \,|\, 0 \leq x \leq 1, \, 0 \leq y \leq x, \, 0 \leq z \leq 5 - x - y \big\}\)

    Responder
    \(\frac{430}{120}\)

    16. \(\displaystyle \iiint_E (x^3 + y^3 + z^3) \, dV,\)donde\(E = \big\{(x,y,z) \,|\, 0 \leq x \leq 2, \, 0 \leq y \leq 2x, \, 0 \leq z \leq 4 - x - y \big\}\)

    17. \(\displaystyle \iiint_E y \, dV,\)donde\(E = \big\{(x,y,z) \,|\, -1 \leq x \leq 1, \, -\sqrt{1 - x^2} \leq y \leq \sqrt{1 - x^2}, \, 0 \leq z \leq 1 - x^2 - y^2 \big\}\)

    Responder
    \(0\)

    18. \(\displaystyle \iiint_E x \, dV,\)donde\(E = \big\{(x,y,z) \,|\, -2 \leq x \leq 2, \, -4\sqrt{1 - x^2} \leq y \leq \sqrt{4 - x^2}, \, 0 \leq z \leq 4 - x^2 - y^2 \big\}\)

    En los ejercicios 19 - 22, evaluar las integrales triples sobre la región delimitada\(E\) de la forma

    \(E = \big\{(x,y,z) \,|\, g_1 (y) \leq x \leq g_2(y), \, c \leq y \leq d, \, e \leq z \leq f \big\}\).

    19. \(\displaystyle \iiint_E x^2 \, dV,\)donde\(E = \big\{(x,y,z) \,|\, 1 - y^2 \leq x \leq y^2 - 1, \, -1 \leq y \leq 1, \, 1 \leq z \leq 2 \big\}\)

    Responder
    \(-\frac{64}{105}\)

    20. \(\displaystyle \iiint_E (y + \sin x) \, dV,\)donde\(E = \big\{(x,y,z) \,|\, -y^4 \leq x \leq y^4, \, 0 \leq y \leq 2, \, 0 \leq z \leq 4\big\}\)

    21. \(\displaystyle \iiint_E (x - yz) \, dV,\)donde\(E = \big\{(x,y,z) \,|\, -y^6 \leq x \leq \sqrt{y}, \, 0 \leq y \leq 1x, \, -1 \leq z \leq 1 \big\}\)

    Responder
    \(\frac{11}{26}\)

    22. \(\displaystyle \iiint_E z \, dV,\)donde\(E = \big\{(x,y,z) \,|\, 2 - 2y \leq x \leq 2 + \sqrt{y}, \, 0 \leq y \leq 1x, \, 2 \leq z \leq 3 \big\}\)

    En los ejercicios 23 - 26, evaluar las triples integrales sobre la región delimitada

    \(E = \big\{(x,y,z) \,|\, g_1(y) \leq x \leq g_2(y), \, c \leq y \leq d, \, u_1(x,y) \leq z \leq u_2 (x,y) \big\}\)

    23. \(\displaystyle \iiint_E z \, dV,\)donde\(E = \big\{(x,y,z) \,|\, -y \leq x \leq y, \, 0 \leq y \leq 1, \, 0 \leq z \leq 1 - x^4 - y^4 \big\}\)

    Responder
    \(\frac{113}{450}\)

    24. \(\displaystyle \iiint_E (xz + 1) \, dV,\)donde\(E = \big\{(x,y,z) \,|\, 0 \leq x \leq \sqrt{y}, \, 0 \leq y \leq 2, \, 0 \leq z \leq 1 - x^2 - y^2 \big\}\)

    25. \(\displaystyle \iiint_E (x - z) \, dV,\)donde\(E = \big\{(x,y,z) \,|\, - \sqrt{1 - y^2} \leq x \leq y, \, 0 \leq y \leq \frac{1}{2}x, \, 0 \leq z \leq 1 - x^2 - y^2 \big\}\)

    Responder
    \(\frac{1}{160}(6 \sqrt{3} - 41)\)

    26. \(\displaystyle \iiint_E (x + y) \, dV,\)donde\(E = \big\{(x,y,z) \,|\, 0 \leq x \leq \sqrt{1 - y^2}, \, 0 \leq y \leq 1x, \, 0 \leq z \leq 1 - x \big\}\)

    En los ejercicios 27 - 30, evaluar las triples integrales sobre la región delimitada

    \(E = \big\{(x,y,z) \,|\, (x,y) \in D, \, u_1 (x,y) x \leq z \leq u_2 (x,y) \big\}\), donde\(D\) está la proyección de\(E\) sobre el\(xy\) plano.

    27. \(\displaystyle \iint_D \left(\int_1^2 (x + y) \, dz \right) \, dA,\)donde\(D = \big\{(x,y) \,|\, x^2 + y^2 \leq 1\big\}\)

    Responder
    \(\frac{3\pi}{2}\)

    28. \(\displaystyle \iint_D \left(\int_1^3 x (z + 1)\, dz \right) \, dA,\)donde\(D = \big\{(x,y) \,|\, x^2 -y^2 \geq 1, \, x \leq \sqrt{5}\big\}\)

    29. \(\displaystyle \iint_D \left(\int_0^{10-x-y} (x + 2z) \, dz \right) \, dA,\)donde\(D = \big\{(x,y) \,|\, y \geq 0, \, x \geq 0, \, x + y \leq 10\big\}\)

    Responder
    \(1250\)

    30. \(\displaystyle \iint_D \left(\int_0^{4x^2+4y^2} y \, dz \right) \, dA,\)donde\(D = \big\{(x,y) \,|\, x^2 + y^2 \leq 4, \, y \geq 1, \, x \geq 0\big\}\)

    31. El sólido\(E\) delimitado por\(y^2 + z^2 = 9, \, z = 0\), y\(x = 5\) se muestra en la siguiente figura. Evaluar la integral\(\displaystyle \iiint_E z \, dV\) integrando primero con respecto a\(z\), luego\(y\), y luego\(x\).

    Forma arqueada sólida que alcanza su máximo a lo largo del eje y con z = 3. La forma alcanza cero en y = más o menos 3, y la gráfica se trunca en x = 0 y 5.

    Responder
    \(\displaystyle \int_0^5 \int_{-3}^3 \int_0^{\sqrt{9-y^2}} z \, dz \, dy \, dx = 90\)

    32. The solid \(E\) bounded by \(y = \sqrt{x}, \, x = 4, \, y = 0\), and \(z = 1\) is given in the following figure. Evaluate the integral \(\displaystyle \iiint_E xyz \, dV\) by integrating first with respect to \(x\), then \(y\), and then \(z\).

    A quarter section of an oval cylinder with z from negative 2 to positive 1. The solid is bounded by y = 0 and x = 4, and the top of the shape runs from (0, 0, 1) to (4, 2, 1) in a gentle arc.

    33. [T] El volumen de un sólido\(E\) viene dado por la integral\(\displaystyle \int_{-2}^0 \int_x^0 \int_0^{x^2+y^2} \, dz \, dy \, dx.\) Utilice un sistema de álgebra computacional (CAS) para graficar\(E\) y encontrar su volumen. Redondea tu respuesta a dos decimales.

    Responder
    \(V \approx 5.33 \text{ units}^3\)

    Una forma compleja que comienza en el origen y alcanza su máximo en (negativo 2, negativo 2, 8). La forma es truncada por el plano x = y, el plano x = 0, el plano y = negativo 2, el plano z = 0, y una forma triangular compleja con bordes y lados curvos (negativo 2, negativo 2, 8), (0, 0, 0) y (0, negativo 2, 4).

    34. [T] El volumen de un sólido\(E\) is given by the integral \(\displaystyle \int_{-1}^0 \int_{-x^3}^0 \int_0^{1+\sqrt{x^2+y^2}} \, dz \, dy \, dx.\) Use a CAS to graph \(E\) and find its volume \(V\). Round your answer to two decimal places.

    In exercises 35 - 38, use two circular permutations of the variables \(x, \, y,\) and \(z\) to write new integrals whose values equal the value of the original integral. A circular permutation of \(x, \, y\), and \(z\) is the arrangement of the numbers in one of the following orders: \(y, \, z,\) and \(x\) or \(z, \, x,\) and \(y\).

    35. \(\displaystyle \int_0^1 \int_1^3 \int_2^4 (x^2z^2 + 1) \, dx \, dy \, dz\)

    Answer
    \(\displaystyle \int_0^1 \int_1^3 \int_2^4 (y^2z^2 + 1) \, dz \, dx \, dy;\)
    \(\displaystyle \int_0^1 \int_1^3 \int_2^4 (x^2y^2 + 1) \, dy \, dz \, dx\)

    36. \(\displaystyle \int_0^3 \int_0^1 \int_0^{-x+1} (2x + 5y + 7z) dy \, dx \, dz\)

    37. \(\displaystyle \int_0^1 \int_{-y}^y \int_0^{1-x^4-y^4} \ln x \, dz \, dx \, dy\)

    38. \(\displaystyle \int_{-1}^1 \int_0^1 \int_{-y^6}^{\sqrt{y}} (x + yz) \, dx \, dy \, dz\)

    39. Set up the integral that gives the volume of the solid \(E\) bounded by \(y^2 = x^2 + z^2\) and \(y = a^2\), where \(a > 0\).

    Answer
    \(\displaystyle V = \int_{-a}^a \int_{-\sqrt{a^2-z^2}}^{\sqrt{a^2-z^2}} \int_{\sqrt{x^2+z^2}}^{a^2} \, dy \, dx \, dz\)

    40. Set up the integral that gives the volume of the solid \(E\) bounded by \(x = y^2 + z^2\) and \(x = a^2\), where \(a > 0\).

    Average Value of a Function

    41. Find the average value of the function \(f(x,y,z) = x + y + z\) over the parallelepiped determined by \(x + 0, \, x = 1, \, y = 0, \, y = 3, \, z = 0\), and \(z = 5\).

    Answer
    \(\frac{9}{2}\)

    42. Find the average value of the function \(f(x,y,z) = xyz\) over the solid \(E = [0,1] \times [0,1] \times [0,1]\) situated in the first octant.

    Finding Volumes using Triple Integrals

    43. Find the volume of the solid \(E\) that lies under the plane \(x + y + z = 9\) and whose projection onto the \(xy\)-plane is bounded by \(x = sqrt{y-1}, \, x = 0\), and \(x + y = 7\).

    Answer
    \(\frac{156}{5} \text{ units}^3\)

    44. Find the volume of the solid \(E\) that lies under the plane \(2x+y+z=8\) and whose projection onto the \(xy\)-plane is bounded by \(x = sin^{-1} y, \, y = 0\), and \(x = \frac{\pi}{2}\).

    a. Show that the equations of the planes of the lateral faces of the pyramid are \(4y + z = 8, \, 4y - z = -8, \, 4x + z = 8\), and \(-4x + z = 8\).

    b. Find the volume of the pyramid.

    Answer
    a. Answers may vary;
    b. \(\frac{128}{3} \text{ units}^3\)

    46. Consider the pyramid with the base in the \(xy\)-plane of \([-3,3] \times [-3,3]\) and the vertex at the point \((0,0,9)\).

    a. Show that the equations of the planes of the side faces of the pyramid are \(3y + z = 9, \, 3y + z = 9, \, y = 0\) and \(x = 0\).

    b. Find the volume of the pyramid.

    47. The solid \(E\) bounded by the sphere of equation \(x^2 + y^2 + z^2 = r^2\) with \(r > 0\) and located in the first octant is represented in the following figure.

    The eighth of a sphere of radius 2 with center at the origin for positive x, y, and z.

    a.- Escribir la triple integral que da el volumen de\(E\) integrando primero con respecto a\(z\), luego con\(y\), y luego con\(x\).

    b. reescribir la integral en la parte a. como integral equivalente en otros cinco órdenes.

    Responder

    a.\(\displaystyle \int_0^4 \int_0^{\sqrt{r^2-x^2}} \int_0^{\sqrt{r^2-x^2-y^2}} \, dz \, dy \, dx\)
    b.\(\displaystyle \int_0^2 \int_0^{\sqrt{r^2-x^2}} \int_0^{\sqrt{r^2-x^2-y^2}} \, dz \, dx \, dy,\)
    \(\displaystyle \int_0^r \int_0^{\sqrt{r^2-x^2}} \int_0^{\sqrt{r^2-x^2-y^2}} \, dy \, dx \, dz,\)
    \(\displaystyle \int_0^r \int_0^{\sqrt{r^2-x^2}} \int_0^{\sqrt{r^2-x^2-y^2}} dy \, dz \, dx,\)
    \(\displaystyle \int_0^r \int_0^{\sqrt{r^2-x^2}} \int_0^{\sqrt{r^2-x^2-y^2}} dx \, dy \, dz,\)
    \(\displaystyle \int_0^r \int_0^{\sqrt{r^2-x^2}} \int_0^{\sqrt{r^2-x^2-y^2}} dx \, dz \,dy\)

    48. El sólido\(E\) delimitado por la esfera de ecuación\(9x^2 + 4y^2 + z^2 = 1\) y ubicado en el primer octante se representa en la siguiente figura.

    En el primer octante se muestra una forma compleja que es aproximadamente un ovoide sólido con el centro el origen, altura 1, ancho 0.5 y largo 0.35.

    a. escribir la triple integral que da el volumen de\(E\) by integrating first with respect to \(z\) then with \(y\) and then with \(x\).

    b. Rewrite the integral in part a. as an equivalent integral in five other orders.

    49. Find the volume of the prism with vertices \((0,0,0), \, (2,0,0), \, (2,3,0), \, (0,3,0), \, (0,0,1)\), and \((2,0,1)\).

    Answer
    \(3 \text{ units}^3\)

    50. Find the volume of the prism with vertices \((0,0,0), \, (4,0,0), \, (4,6,0), \, (0,6,0), \, (0,0,1)\), and \((4,0,1)\).

    51. The solid \(E\) bounded by \(z = 10 - 2x - y\) and situated in the first octant is given in the following figure. Find the volume of the solid.

    A tetrahedron bounded by the x y, y z, and x z planes and a triangle with vertices (0, 0, 10), (5, 0, 0), and (0, 10, 0).

    Responder
    \(\frac{250}{3} \text{ units}^3\)

    52. El sólido\(E\) delimitado por\(z = 1 - x^2\) y situado en el primer octante se da en la siguiente figura. Encuentra el volumen del sólido.

    Forma compleja en el primer octante con altura 1, ancho 5 y largo 1. La forma parece ser un cuarto ligeramente deformado de un cilindro de radio 1 y ancho 5.

    Aproximación a triples integrales

    53. La regla del punto medio para la triple integral\(\displaystyle \iiint_B f(x,y,z) \,dV\) over the rectangular solid box \(B\) is a generalization of the midpoint rule for double integrals. The region \(B\) is divided into subboxes of equal sizes and the integral is approximated by the triple Riemann sum \[\sum_{i=1}^l \sum_{j=1}^m \sum_{k=1}^n f(\bar{x_i}, \bar{y_j}, \bar{z_k}) \Delta V,\nonumber \] where \((\bar{x_i}, \bar{y_j}, \bar{z_k})\) is the center of the box \(B_{ijk}\) and \(\Delta V\) is the volume of each subbox. Apply the midpoint rule to approximate \[\iiint_B x^2 \,dV\nonumber \] over the solid \(B = \big\{(x,y,z) \,|\, 0 \leq x \leq 1, \, 0 \leq y \leq 1, \, 0 \leq z \leq 1 \big\}\) by using a partition of eight cubes of equal size. Round your answer to three decimal places.

    Answer
    \(\displaystyle \iiint_B f(x,y,z) \,dV\quad\) \(\approx\quad\frac{5}{16} \approx 0.313 \text{ units}^3\)

    54. [T]

    a. Apply the midpoint rule to approximate \(\displaystyle \iiint_B e^{-x^2} \, dV\) over the solid \(B = \big\{(x,y,z) \,|\, 0 \leq x \leq 1, \, 0 \leq y \leq 1, \, 0 \leq z \leq 1 \big\}\) by using a partition of eight cubes of equal size. Round your answer to three decimal places.

    b. Use a CAS to improve the above integral approximation in the case of a partition of \(n^3\) cubes of equal size, where \(n = 3,\,4,\, ..., \,10\).

    Applications

    55. Suppose that the temperature in degrees Celsius at a point \((x,y,z)\) of a solid \(E\) bounded by the coordinate planes and the plane \(x + y + z = 5\) is given by: \[T (x,y,z) = xz + 5z + 10\nonumber \] Find the average temperature over the solid.

    Answer
    \(17.5^{\circ}\) C

    56. Suppose that the temperature in degrees Fahrenheit at a point \((x,y,z)\) of a solid \(E\) bounded by the coordinate planes and the plane \(x + y + z = 5\) is given by: \[T(x,y,z) = x + y + xy\nonumber \] Find the average temperature over the solid.

    57. Show that the volume of a right square pyramid of height \(h\) and side length \(a\) is \( v = \dfrac{ha^2}{3}\) by using triple integrals.

    58. Show that the volume of a regular right hexagonal prism of edge length \(a\) is \(\dfrac{3a^3 \sqrt{3}}{2}\) by using triple integrals.

    59. Show that the volume of a regular right hexagonal pyramid of edge length \(a\) is \(\dfrac{a^3 \sqrt{3}}{2}\) by using triple integrals.

    60. If the charge density at an arbitrary point \((x,y,z)\) of a solid \(E\) is given by the function \(\rho (x,y,z)\), then the total charge inside the solid is defined as the triple integral \(\displaystyle \iiint_E \rho (x,y,z) \,dV.\) Assume that the charge density of the solid \(E\) enclosed by the paraboloids \(x = 5 - y^2 - z^2\) and \(x = y^2 + z^2 - 5\) is equal to the distance from an arbitrary point of \(E\) to the origin. Set up the integral that gives the total charge inside the solid \(E\).

    Answer
    Total Charge inside the Solid \(E \quad=\quad\) \(\displaystyle \int_{-\sqrt{5}}^{\sqrt{5}}\int_{-\sqrt{5-y^2}}^{\sqrt{5-y^2}}\int_{y^2+z^2-5}^{5 - y^2 - z^2} \sqrt{x^2+y^2+z^2}\,dx\,dz\,dy\)

    This page titled 15.4E: Ejercicios para la Sección 15.4 is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Edwin “Jed” Herman & Gilbert Strang (OpenStax) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.