Saltar al contenido principal
LibreTexts Español

6.2.2E: Gráficas de las Otras Funciones Trigonométricas (Ejercicios)

  • Page ID
    116718
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Sección 6.2 Ejercicios

    Haga coincidir cada función trigonométrica con una de las gráficas.

    1. \(f\left(x\right)=\tan \left(x\right)\)

    2. \(f\left(x\right)=\sec \left(x\right)\)

    3. \(f\left(x\right)=\csc (x)\)

    4. \(f\left(x\right)=\cot \left(x\right)\)

    I2019-07-09 4.10.09.png II2019-07-09 4.10.28.png

    III2019-07-09 4.10.47.png IV2019-07-09 4.11.08.png

    Encuentra el periodo y desplazamiento horizontal de cada una de las siguientes funciones.

    5. \(f\left(x\right)=2\tan \left(4x-32\right)\)

    6. \(g\left(x\right)=3\tan \left(6x+42\right)\)

    7. \(h\left(x\right)=2\sec \left(\dfrac{\pi }{4} \left(x+1\right)\right)\)

    8. \(k\left(x\right)=3\sec \left(2\left(x+\dfrac{\pi }{2} \right)\right)~\)

    9. \(m\left(x\right)=6\csc \left(\dfrac{\pi }{3} x+\pi \right)\)

    10. \(n\left(x\right)=4\csc \left(\dfrac{5\pi }{3} x-\dfrac{20\pi }{3} \right)\)

    11. Esboce una gráfica de #7 arriba.

    12. Esboce una gráfica de #8 arriba.

    13. Esboce una gráfica de #9 arriba.

    14. Esboce una gráfica de #10 arriba.

    15. Esbozar una gráfica de\(j\left(x\right)=\tan \left(\dfrac{\pi }{2} x\right)\).

    16. Esbozar una gráfica de\(p\left(t\right)=2\tan \left(t-\dfrac{\pi }{2} \right)\).

    Encuentre una fórmula para cada función graficada a continuación.

    17. 2019-07-09 4.12.29.png18. 2019-07-09 4.14.13.png

    19. 2019-07-09 4.14.33.png20. 2019-07-09 4.14.56.png

    21. Si\(\tan x=-1.5\), encuentra\(\tan \left(-x\right)\).

    22. Si\(\tan x=3\), encuentra\(\tan \left(-x\right)\).

    23. Si\(\sec x=2\), encuentra\(\sec \left(-x\right)\).

    24. Si\(\sec x=-4\), encuentra\(\sec \left(-x\right)\).

    25. Si\(\csc x=-5\), encuentra\(\csc \left(-x\right)\).

    26. Si\(\csc x=2\), encuentra\(\csc \left(-x\right)\).

    Simplifica completamente cada una de las siguientes expresiones.

    27. \(\cot \left(-x\right)\cos \left(-x\right)+\sin \left(-x\right)\)

    28. \(\cos \left(-x\right)+\tan \left(-x\right)\sin \left(-x\right)\)

    Contestar

    1. II

    3. I

    5. Periodo:\(\dfrac{\pi}{4}\). Desplazamiento horizontal: 8 a la derecha

    7. Periodo: 8. Desplazamiento horizontal: 1 izquierda

    9. Periodo: 6. Desplazamiento horizontal: 3 a la izquierda

    11. Screen Shot 2019-10-11 en 1.59.39 PM.png

    13. Screen Shot 2019-10-11 a las 2.00.14 PM.png

    15. Screen Shot 2019-10-11 en 2.01.07 PM.png

    17. \(f(x) = 2 \sec(\dfrac{\pi}{2} x) - 1\)

    19. \(f(x) = 2 \csc(\dfrac{\pi}{4} x ) + 1\)

    21. \(\tan(-x) = 1.5\)

    23. \(\sec(-x) = 2\)

    25. \(\csc(-x) = 5\)

    27. \(-\csc(x)\)


    This page titled 6.2.2E: Gráficas de las Otras Funciones Trigonométricas (Ejercicios) is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by David Lippman & Melonie Rasmussen (The OpenTextBookStore) via source content that was edited to the style and standards of the LibreTexts platform.