Saltar al contenido principal
LibreTexts Español

3.3.1: Ejercicios 3.3

  • Page ID
    113954
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Términos y Conceptos

    Ejercicio\(\PageIndex{1}\)

    ¿Puede la fracción\(\displaystyle \frac{x+2}{x^2+2}\) be simplified? Explain.

    Responder

    No, el numerador y el denominador no tienen factores comunes.

    Ejercicio\(\PageIndex{2}\)

    En la fracción\(\displaystyle \frac{2}{(x+3)^2(x+2)}\) are there any repeated factors? If so, what factor(s) are repeated, and how many times?

    Responder

    Sí,\(x+3\) is repeated twice

    Ejercicio\(\PageIndex{3}\)

    ¿Qué se entiende por cuadrático irreducible?

    Responder

    Una cuadrática que no tiene raíces reales valoradas

    Ejercicio\(\PageIndex{4}\)

    Dé un ejemplo de una cuadrática irreducible.

    Responder

    Las respuestas variarán;\(x^2+a\) is an example if \(a>0\)

    Problemas

    Simplificar la expresión dada en ecercises\(\PageIndex{5}\) -\(\PageIndex{9}\).

    Ejercicio\(\PageIndex{5}\)

    \(\displaystyle \frac{5}{18} - \frac{5}{12}\)

    Responder

    \(\displaystyle \frac{-5}{36}\)

    Ejercicio\(\PageIndex{6}\)

    \(\displaystyle \frac{x}{b} - \frac{b}{x}\)

    Responder

    \(\displaystyle \frac{x^2-b^2}{xb}\)

    Ejercicio\(\PageIndex{7}\)

    \(\displaystyle \frac{x}{y^2} - \frac{x}{x+y}\)

    Responder

    \(\displaystyle \frac{x^2+xy-xy^2}{xy^2 + y^3}\)

    Ejercicio\(\PageIndex{8}\)

    \(\displaystyle \frac{\phantom{x} \frac{1}{x} - \frac{x+2}{x^2} \phantom{x}}{\frac{4}{x^2} - \frac{x^2+1}{x^3}}\)

    Responder

    \(\displaystyle \frac{\phantom{x} -2x}{-x^2+4x-1 \phantom{x} }\), \(x \neq 0\)

    Ejercicio\(\PageIndex{9}\)

    \(\displaystyle \frac{\phantom{x} \frac{1}{x-b} - \frac{1}{x} \phantom{x}}{b}\)

    Responder

    \(\displaystyle \frac{1}{x^2-bx}\), \(b\neq 0\)

    En ejercicios\(\PageIndex{10}\) -\(\PageIndex{16}\), descomponer la fracción dada. No resolver para\(A\)\(B\),, etc.

    Ejercicio\(\PageIndex{10}\)

    \(\displaystyle \frac{x-8}{(x+2)^3}\)

    Responder

    \(\displaystyle \frac{A}{x+2} + \frac{B}{(x+2)^2} + \frac{C}{(x+2)^3}\)

    Ejercicio\(\PageIndex{11}\)

    \(\displaystyle \frac{4}{(s-1)^2(2s-5)(s+3)}\)

    Responder

    \(\displaystyle \frac{A}{s-1} + \frac{B}{(s-1)^2} + \frac{C}{2s-5} + \frac{D}{s+3}\)

    Ejercicio\(\PageIndex{12}\)

    \(\displaystyle \frac{5t^2+11t-9}{(t+1)^3(t^2+1)^2}\)

    Responder

    \(\displaystyle \frac{A}{t+1} + \frac{B}{(t+1)^2} + \frac{C}{(t+1)^3} + \frac{Dt+E}{t^2+1} + \frac{Ft+G}{(t^2+1)^2}\)

    Ejercicio\(\PageIndex{13}\)

    \(\displaystyle \frac{6x}{(x-4)(x^2+x+5)}\)

    Responder

    \(\displaystyle \frac{A}{x-4} + \frac{Bx+C}{x^2+x+5}\)

    Ejercicio\(\PageIndex{14}\)

    \(\displaystyle \frac{3x-7}{x^4-1}\)

    Responder

    \(\displaystyle \frac{A}{x+1} + \frac{B}{x-1} + \frac{Cx+D}{x^2+1}\)

    Ejercicio\(\PageIndex{15}\)

    \(\displaystyle \frac{2s}{s^3+1}\)

    Responder

    \(\displaystyle \frac{A}{s+1} + \frac{Bs+C}{s^2-s+1}\)

    Ejercicio\(\PageIndex{16}\)

    \(\displaystyle \frac{11}{t^2-6t+5}\)

    Responder

    \(\displaystyle \frac{A}{t-5} + \frac{B}{t-1}\)

    En ejercicios\(\PageIndex{17}\) -\(\PageIndex{22}\), descomponer completamente la fracción dada.

    Ejercicio\(\PageIndex{17}\)

    \(\displaystyle \frac{x+5}{x^2+x-2}\)

    Responder

    \(\displaystyle \frac{-1}{x+2} + \frac{2}{x-1}\)

    Ejercicio\(\PageIndex{18}\)

    \(\displaystyle \frac{1}{x^2-a^2}\)

    Responder

    \(\displaystyle \frac{1/(2a)}{x-a} - \frac{1/(2a)}{x+a}\)

    Ejercicio\(\PageIndex{19}\)

    \(\displaystyle \frac{2s^2-s+4}{s^3+4s}\)

    Responder

    \(\displaystyle \frac{1}{s} + \frac{s-1}{s^2+4}\)

    Ejercicio\(\PageIndex{20}\)

    \(\displaystyle \frac{y-1}{y^2+3y+2}\)

    Responder

    \(\displaystyle \frac{3}{y+2} - \frac{2}{y+1}\)

    Ejercicio\(\PageIndex{21}\)

    \(\displaystyle \frac{4x}{x^3-x^2-x+1}\)

    Responder

    \(\displaystyle \frac{-1}{x+1} + \frac{1}{x-1} + \frac{2}{(x-1)^2}\)

    Ejercicio\(\PageIndex{22}\)

    \(\displaystyle \frac{x^2+2x-1}{2x^3+3x^2-2x}\)

    Responder

    \(\displaystyle \frac{1/2}{x} + \frac{1/5}{2x-1} - \frac{1/10}{x+2}\)


    3.3.1: Ejercicios 3.3 is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.