Saltar al contenido principal
LibreTexts Español

8: Teorías Avanzadas los Enlaces Covalente

  • Page ID
    1860
  • Hemos examinado las ideas básicas de los enlaces, mostrando que los átomos comparten electrones para formar moléculas con estructuras de Lewis estables y que podemos predecir las formas de esas moléculas mediante la teoría de repulsión de pares de electrones de valencia (VSEPR). Estas ideas nos dan un importante punto de partida para comprender los enlaces químicos. Pero, estos modelos a veces se quedan cortos en sus habilidades para predecir el comportamiento de sustancias reales. ¿Cómo podemos conciliar las geometrías de los orbitales atómicos s, p y d con formas moleculares que muestran ángulos como 120 ° y 109.5 °? Además, sabemos que los electrones y el comportamiento magnético están relacionados a través de campos electromagnéticos.

    • 8.1: Preludio a los enlaces covalente
      Sin embargo, el oxígeno muestra un comportamiento magnético muy diferente al nitrógeno. Podemos verter nitrógeno líquido a través de un campo magnético sin interacciones visibles, mientras que el oxígeno líquido es atraído hacia el imán y flota en el campo magnético. Necesitamos comprender los conceptos adicionales de la teoría del enlace de valencia, la hibridación orbital y la teoría de la órbita molecular para comprender estas observaciones.
    • 8.2: Teoría de enlace de valencia
      La teoría del enlace de valencia describe el enlace como consecuencia de la superposición de dos orbitales atómicos separados en átomos diferentes que crea una región con un par de electrones compartidos entre los dos átomos. Cuando los orbitales se superponen a lo largo de un eje que contiene los núcleos, forman un enlace σ. Cuando se superponen de una manera que crea un nodo a lo largo de este eje, forman un enlace π.
    • 8.3: Hybrid Atomic Orbitals
      We can use hybrid orbitals, which are mathematical combinations of some or all of the valence atomic orbitals, to describe the electron density around covalently bonded atoms. These hybrid orbitals either form sigma (σ) bonds directed toward other atoms of the molecule or contain lone pairs of electrons. We can determine the type of hybridization around a central atom from the geometry of the regions of electron density about it.
    • 8.4: Multiple Bonds
      Multiple bonds consist of a σ bond located along the axis between two atoms and one or two π bonds. The σ bonds are usually formed by the overlap of hybridized atomic orbitals, while the π bonds are formed by the side-by-side overlap of unhybridized orbitals. Resonance occurs when there are multiple unhybridized orbitals with the appropriate alignment to overlap, so the placement of π bonds can vary.
    • 8.5: Molecular Orbital Theory
      Molecular orbital (MO) theory describes the behavior of electrons in a molecule in terms of combinations of the atomic wavefunctions. The resulting molecular orbitals may extend over all the atoms in the molecule. Bonding molecular orbitals are formed by in-phase combinations of atomic wavefunctions, and electrons in these orbitals stabilize a molecule. Antibonding molecular orbitals result from out-of-phase combinations and electrons in these orbitals make a molecule less stable.
    • 8.6: Advanced Theories of Covalent Bonding (Exercises)
      These are homework exercises to accompany the Textmap created for "Chemistry" by OpenStax. Complementary General Chemistry question banks can be found for other Textmaps and can be accessed here. In addition to these publicly available questions, access to private problems bank for use in exams and homework is available to faculty only on an individual basis; please contact Delmar Larsen for an account with access permission.

    Contribuyentes