Saltar al contenido principal
LibreTexts Español

1.6: Problems for Chapter 1

  • Page ID
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    link to Solutions Manual


    P1.1: Draw a picture showing the orbitals involved in bonding in the molecules below.  Draw all bonds, both sigma and pi, as overlapping orbitals.  Locate all lone pairs in their appropriate orbitals. 

    1. dimethyl ether (CH3OCH3)
    2. ethanol (CH3CH2OH)
    3. acetaldehyde (CH3COH)
    4. hydrogen cyanide (HCN)

    P1.2:  Give the electron configuration for:

    1. a lithium cation (Li+)
    2. a calcium cation (Ca2+)
    3. a iron cation in the ferric (Fe+3) state

    P1.3: Draw one example each (there are many possible correct answers) of compounds fitting the descriptions below, using line structures. Be sure to designate the location of all non-zero formal charges. All atoms should have complete octets (phosphorus may exceed the octet rule).

    1. an 8-carbon molecule with secondary alcohol, primary amine, amide, and cis-alkene groups
    2. a 12-carbon molecule with carboxylate, diphosphate, and lactone (cyclic ester) groups.
    3. a 9-carbon molecule with cyclopentane, trans-alkene, ether, and aldehyde groups

    P1.4: For the structures below, label all non-zero formal charges, and determine the molecular formula and the IHD.


    P1.5: In the structures shown below:

    a-i) Describe the orbitals involved in the bonds indicated by the arrows. 

    j) Fill in all formal charges

    k) Give the molecular formula for arginine



    P1.6: The four compounds below appeared in the October 9 and October 25, 2006 issues of Chemical and Engineering News. 

    a-k) For each bond indicated by an arrow, specify the types of orbitals that are overlapping.

    l) Which compound contains two aldehydes?  Which contains an ether?  Which contains an amide? Which contains a terminal alkene? Which contains an amine (and is this amine primary, secondary, tertiary, or quaternary?)

    m) Give the molecular formula for compound 3


    P1.7: Draw four isomers with the molecular formula C4H8. (

    P1.8: Draw structures of four different amides with molecular formula C3H7NO.

    P1.9: Rank the bonds a-f below according to increasing bond length.


    P1.10: Draw the structures of the following organic molecules:

    1. 2,6-dimethyldecane
    2. 2,2,5,5-tetramethyl-3-hexanol
    3. methyl butanoate
    4. N-ethylhexanamide
    5. 7-fluoroheptanoate
    6. 1-ethyl-3,3-dimethylcyclohexene

    Challenge problems

    C1.1: Imagine that you hear a description of the bonding in water as being derived directly from the atomic orbital theory, without use of the hybrid orbital concept.  In other words, the two bonds would be formed by the overlap of the half-filled 2py and 2pz orbitals of oxygen with the 1s orbitals of hydrogen, while the two lone pairs on oxygen would occupy the 2s and 2px orbitals. What is wrong with this picture?  How would the bonding geometry differ from what is actually observed for water?

    C1.2: Draw a picture showing the geometry of the overlapping orbitals that form the bonding network in allene, H2CCCH2. Then, draw a Lewis structure for the molecule, using the solid/dash wedge bond convention as necessary to indicate the correct geometry of the s bonds.

    This page titled 1.6: Problems for Chapter 1 is shared under a not declared license and was authored, remixed, and/or curated by Tim Soderberg.