Saltar al contenido principal

# 4.7E: Ejercicios

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

## La práctica hace a la perfección

Evaluar el Determinante de una Matriz de 2 × 2

$$\left[\begin{matrix}6&−2\\3&−1\end{matrix}\right]$$

$$\left[\begin{matrix}−4&8\\−3&5\end{matrix}\right]$$

Contestar

$$4$$

$$\left[\begin{matrix}−3&5\\0&−4\end{matrix}\right]$$

$$\left[\begin{matrix}−2&0\\7&−5\end{matrix}\right]$$

Contestar

$$10$$

Evaluar el Determinante de una Matriz de 3 × 3

En los siguientes ejercicios, encuentre y luego evalúe a los menores indicados.

$$\left|\begin{matrix}3&−1&4\\−1&0&−2\\−4&1&5\end{matrix}\right|$$

Encuentra el menor ⓐ $$a_1$$$$b_2$$$$c_3$$

$$\left|\begin{matrix}−1&−3&2\\4&−2&−1\\−2&0&−3\end{matrix}\right|$$

Encuentra el menor ⓐ $$a_1$$$$b_1$$$$c_2$$

Contestar

ⓐ 6 ⓑ $$−14$$$$−6$$

$$\left|\begin{matrix}2&−3&−4\\−1&2&−3\\0&−1&−2\end{matrix}\right|$$

Encuentra el menor ⓐ $$a_2$$$$b_2$$$$c_2$$

$$\left|\begin{matrix}−2&−2&3\\1&−3&0\\−2&3&−2\end{matrix}\right|$$

Encuentra el menor ⓐ $$a_3$$$$b_3$$$$c_3$$

Contestar

ⓐ 9 ⓑ $$−3$$ ⓒ 8

En los siguientes ejercicios, evalúe cada determinante expandiendo por menores a lo largo de la primera fila.

$$\left|\begin{matrix}−2&3&−1\\−1&2&−2\\3&1&−3\end{matrix}\right|$$

$$\left|\begin{matrix}4&−1&−2\\−3&−2&1\\−2&−5&7\end{matrix}\right|$$

Contestar

$$−77$$

$$\left|\begin{matrix}−2&−3&−4\\5&−6&7\\−1&2&0\end{matrix}\right|$$

$$\left|\begin{matrix}1&3&−2\\5&−6&4\\0&−2&−1\end{matrix}\right|$$

Contestar

$$49$$

En los siguientes ejercicios, evalúe cada determinante expandiendo por menores.

$$\left|\begin{matrix}−5&−1&−4\\4&0&−3\\2&−2&6\end{matrix}\right|$$

$$\left|\begin{matrix}4&−1&3\\3&−2&2\\−1&0&4\end{matrix}\right|$$

Contestar

$$−24$$

$$\left|\begin{matrix}3&5&4\\−1&3&0\\−2&6&1\end{matrix}\right|$$

$$\left|\begin{matrix}2&−4&−3\\5&−1&−4\\3&2&0\end{matrix}\right|$$

Contestar

$$25$$

Usa la Regla de Cramer para Resolver Sistemas de Ecuaciones

En los siguientes ejercicios, resuelve cada sistema de ecuaciones usando la Regla de Cramer.

$$\left\{\begin{array} {l} −2x+3y=3\\x+3y=12\end{array}\right.$$

$$\left\{\begin{array} {l} x−2y=−5\\2x−3y=−4\end{array}\right.$$

Contestar

$$(7,6)$$

$$\left\{\begin{array} {l} x−3y=−9\\2x+5y=4\end{array}\right.$$

$$\left\{\begin{array} {l} 2x+y=−4\\3x−2y=−6\end{array}\right.$$

Contestar

$$(−2,0)$$

$$\left\{\begin{array} {l} x−2y=−5\\2x−3y=−4\end{array}\right.$$

$$\left\{\begin{array} {l} x−3y=−9\\2x+5y=4\end{array}\right.$$

Contestar

$$(−3,2)$$

$$\left\{\begin{array} {l} 5x−3y=−1\\2x−y=2\end{array}\right.$$

$$\left\{\begin{array} {l} 3x+8y=−3\\2x+5y=−3\end{array}\right.$$

Contestar

$$(−9,3)$$

$$\left\{\begin{array} {l} 6x−5y+2z=3\\2x+y−4z=5\\3x−3y+z=−1 \end{array}\right.$$

$$\left\{\begin{array} {l} 4x−3y+z=7\\2x−5y−4z=3\\3x−2y−2z=−7\end{array}\right.$$

Contestar

$$(−3,−5,4)$$

$$\left\{\begin{array} {l} 2x−5y+3z=8\\3x−y+4z=7\\x+3y+2z=−3\end{array}\right.$$

$$\left\{\begin{array} {l} 11x+9y+2z=−9\\7x+5y+3z=−7\\4x+3y+z=−3\end{array}\right.$$

Contestar

$$(2,−3,−2)$$

$$\left\{\begin{array} {l} x+2z=0\\4y+3z=−2\\2x−5y=3\end{array}\right.$$

$$\left\{\begin{array} {l} 2x+5y=4\\3y−z=3\\4x+3z=−3\end{array}\right.$$

Contestar

$$(−3,2,3)$$

$$\left\{\begin{array} {l} 2y+3z=−1\\5x+3y=−6\\7x+z=1\end{array}\right.$$

$$\left\{\begin{array} {l} 3x−z=−3\\5y+2z=−6\\4x+3y=−8\end{array}\right.$$

Contestar

$$(−2,0,−3)$$

$$\left\{\begin{array} {l} 2x+y=3\\6x+3y=9\end{array}\right.$$

$$\left\{\begin{array} {l} x−4y=−1\\−3x+12y=3\end{array}\right.$$

Contestar

infinitas soluciones

$$\left\{\begin{array} {l} −3x−y=4\\6x+2y=−16\end{array}\right.$$

$$\left\{\begin{array} {l} 4x+3y=2\\20x+15y=5\end{array}\right.$$

Contestar

inconsistente

$$\left\{\begin{array} {l} x+y−3z=−1\\y−z=0\\−x+2y=1\end{array}\right.$$

$$\left\{\begin{array} {l} 2x+3y+z=1\\2x+y+z=9\\3x+4y+2z=20\end{array}\right.$$

Contestar

inconsistente

$$\left\{\begin{array} {l} 3x+4y−3z=−2\\2x+3y−z=−1\\2x+y−2z=6\end{array}\right.$$

$$\left\{\begin{array} {l} x−2y+3z=1\\x+y−3z=7\\3x−4y+5z=7\end{array}\right.$$

Contestar

infinitas soluciones

Resolver aplicaciones usando determinantes

En los siguientes ejercicios, determine si los puntos dados son colineales.

$$(0,1)$$, $$(2,0)$$, y $$(−2,2)$$.

$$(0,−5)$$, $$(−2,−2)$$, y $$(2,−8)$$.

Contestar

$$(4,−3)$$, $$(6,−4)$$, y $$(2,−2)$$.

$$(−2,1)$$, $$(−4,4)$$, y $$(0,−2)$$.

Contestar

no

## Ejercicios de escritura

Explicar la diferencia entre una matriz cuadrada y su determinante. Dar un ejemplo de cada uno.

Explicar qué se entiende por el menor de una entrada en una matriz cuadrada.

Contestar

Las respuestas variarán.

Explica cómo decidir qué fila o columna usarás para expandir un $$3×3$$ determinante.

Explicar los pasos para resolver un sistema de ecuaciones usando la regla de Cramer.

Contestar

Las respuestas variarán.

## Autocomprobación

ⓐ Después de completar los ejercicios, usa esta lista de verificación para evaluar tu dominio de los objetivos de esta sección.

ⓑ Después de revisar esta lista de verificación, ¿qué harás para tener confianza en todos los objetivos?

This page titled 4.7E: Ejercicios is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform.