Saltar al contenido principal

7.7E: Ejercicios

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

En los siguientes ejercicios, resuelve cada desigualdad racional y escribe la solución en notación de intervalos.

1. $$\dfrac{x-3}{x+4} \geq 0$$

Contestar

$$(-\infty,-4) \cup[3, \infty)$$

2. $$\dfrac{x+6}{x-5} \geq 0$$

3. $$\dfrac{x+1}{x-3} \leq 0$$

Contestar

$$[-1,3)$$

4. $$\dfrac{x-4}{x+2} \leq 0$$

5. $$\dfrac{x-7}{x-1}>0$$

Contestar

$$(-\infty, 1) \cup(7, \infty)$$

6. $$\dfrac{x+8}{x+3}>0$$

7. $$\dfrac{x-6}{x+5}<0$$

Contestar

$$(-5,6)$$

8. $$\dfrac{x+5}{x-2}<0$$

9. $$\dfrac{3 x}{x-5}<1$$

Contestar

$$\left(-\dfrac{5}{2}, 5\right)$$

10. $$\dfrac{5 x}{x-2}<1$$

11. $$\dfrac{6 x}{x-6}>2$$

Contestar

$$(-\infty,-3) \cup(6, \infty)$$

12. $$\dfrac{3 x}{x-4}>2$$

13. $$\dfrac{2 x+3}{x-6} \leq 1$$

Contestar

$$[-9,6)$$

14. $$\dfrac{4 x-1}{x-4} \leq 1$$

15. $$\dfrac{3 x-2}{x-4} \geq 2$$

Contestar

$$(-\infty,-6] \cup(4, \infty)$$

16. $$\dfrac{4 x-3}{x-3} \geq 2$$

17. $$\dfrac{1}{a}+\dfrac{2}{5}=\dfrac{1}{2}$$

Contestar

$$a=10$$

18. $$\dfrac{1}{x^{2}-4 x-12}>0$$

19. $$\dfrac{3}{x^{2}-5 x+4}<0$$

Contestar

$$(1,4)$$

20. $$\dfrac{4}{x^{2}+7 x+12}<0$$

21. $$\dfrac{2}{2 x^{2}+x-15} \geq 0$$

Contestar

$$(-\infty,-3) \cup\left(\dfrac{5}{2}, \infty\right)$$

22. $$\dfrac{6}{3 x^{2}-2 x-5} \geq 0$$

23. $$\dfrac{-2}{6 x^{2}-13 x+6} \leq 0$$

Contestar

$$\left(-\infty, \dfrac{2}{3}\right) \cup\left(\dfrac{3}{2}, \infty\right)$$

24. $$\dfrac{-1}{10 x^{2}+11 x-6} \leq 0$$

17. $$\dfrac{1}{a}+\dfrac{2}{5}=\dfrac{1}{2}$$

Contestar

$$a=10$$

18. $$\dfrac{1}{x^{2}-4 x-12}>0$$

19. $$\dfrac{3}{x^{2}-5 x+4}<0$$

Contestar

$$(1,4)$$

20. $$\dfrac{4}{x^{2}+7 x+12}<0$$

25. $$\dfrac{1}{2}+\dfrac{12}{x^{2}}>\dfrac{5}{x}$$

Contestar

$$(-\infty, 0) \cup(0,4) \cup(6, \infty)$$

26. $$\dfrac{1}{3}+\dfrac{1}{x^{2}}>\dfrac{4}{3 x}$$

27. $$\dfrac{1}{2}-\dfrac{4}{x^{2}} \leq \dfrac{1}{x}$$

Contestar

$$[-2,0) \cup(0,4]$$

28. $$\dfrac{1}{2}-\dfrac{3}{2 x^{2}} \geq \dfrac{1}{x}$$

29. $$\dfrac{1}{x^{2}-16}<0$$

Contestar

$$(-4,4)$$

30. $$\dfrac{4}{x^{2}-25}>0$$

31. $$\dfrac{4}{x-2} \geq \dfrac{3}{x+1}$$

Contestar

$$[-10,-1) \cup(2, \infty)$$

32. $$\dfrac{5}{x-1} \leq \dfrac{4}{x+2}$$

Resuelve una desigualdad con funciones racionales

En los siguientes ejercicios, resuelve cada desigualdad de función racional y escribe la solución en notación de intervalos.

33. Dada la función $$R(x)=\dfrac{x-5}{x-2}$$, encuentra los valores de $$x$$ que hacen que la función sea menor o igual a 0.

Contestar

$$(2,5]$$

34. Dada la función $$R(x)=\dfrac{x+1}{x+3}$$, encuentra los valores de $$x$$ que hacen que la función sea menor o igual a 0.

35. Dada la función $$R(x)=\dfrac{x-6}{x+2}$$, encuentra los valores de $$x$$ que hacen que la función sea menor o igual a 0.

Contestar

$$(-\infty,-2) \cup[6, \infty)$$

36. Dada la función $$R(x)=\dfrac{x+1}{x-4}$$, encuentra los valores de $$x$$ que hacen que la función sea menor o igual a 0.

Ejercicios de escritura

37. Escribe los pasos que usarías para explicarle la solución de desigualdades racionales a tu hermanito.

Contestar

Las respuestas variarán

38. Crear una desigualdad racional cuya solución sea $$(-\infty,-2] \cup[4, \infty)$$.

This page titled 7.7E: Ejercicios is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform.