9.3E: Ejercicios
- Page ID
- 51792
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)La práctica hace a la perfección
En los siguientes ejercicios, completa la plaza para hacer un trinomio cuadrado perfecto. Después escribe el resultado como un binomial cuadrado.
-
- \(m^{2}-24 m\)
- \(x^{2}-11 x\)
- \(p^{2}-\frac{1}{3} p\)
-
- \(n^{2}-16 n\)
- \(y^{2}+15 y\)
- \(q^{2}+\frac{3}{4} q\)
-
- \(p^{2}-22 p\)
- \(y^{2}+5 y\)
- \(m^{2}+\frac{2}{5} m\)
-
- \(q^{2}-6 q\)
- \(x^{2}-7 x\)
- \(n^{2}-\frac{2}{3} n\)
- Contestar
-
1. a. \((m-12)^{2}\) b. \(\left(x-\frac{11}{2}\right)^{2}\) c. \(\left(p-\frac{1}{6}\right)^{2}\)
3. a. \((p-11)^{2}\) b. \(\left(y+\frac{5}{2}\right)^{2}\) c. \(\left(m+\frac{1}{5}\right)^{2}\)
En los siguientes ejercicios, resuelve completando la plaza.
5. \(u^{2}+2 u=3\)
6. \(z^{2}+12 z=-11\)
7. \(x^{2}-20 x=21\)
8. \(y^{2}-2 y=8\)
9. \(m^{2}+4 m=-44\)
10. \(n^{2}-2 n=-3\)
11. \(r^{2}+6 r=-11\)
12. \(t^{2}-14 t=-50\)
13. \(a^{2}-10 a=-5\)
14. \(b^{2}+6 b=41\)
15. \(x^{2}+5 x=2\)
16. \(y^{2}-3 y=2\)
17. \(u^{2}-14 u+12=-1\)
18. \(z^{2}+2 z-5=2\)
19. \(r^{2}-4 r-3=9\)
20. \(t^{2}-10 t-6=5\)
21. \(v^{2}=9 v+2\)
22. \(w^{2}=5 w-1\)
23. \(x^{2}-5=10 x\)
24. \(y^{2}-14=6 y\)
25. \((x+6)(x-2)=9\)
26. \((y+9)(y+7)=80\)
27. \((x+2)(x+4)=3\)
28. \((x-2)(x-6)=5\)
- Contestar
-
5. \(u=-3, u=1\)
7. \(x=-1, x=21\)
9. \(m=-2 \pm 2 \sqrt{10} i\)
11. \(r=-3 \pm \sqrt{2} i\)
13. \(a=5 \pm 2 \sqrt{5}\)
15. \(x=-\frac{5}{2} \pm \frac{\sqrt{33}}{2}\)
17. \(u=1, u=13\)
19. \(r=-2, r=6\)
21. \(v=\frac{9}{2} \pm \frac{\sqrt{89}}{2}\)
23. \(x=5 \pm \sqrt{30}\)
25. \(x=-7, x=3\)
27. \(x=-5, x=-1\)
En los siguientes ejercicios, resuelve completando la plaza.
29. \(3 m^{2}+30 m-27=6\)
30. \(2 x^{2}-14 x+12=0\)
31. \(2 n^{2}+4 n=26\)
32. \(5 x^{2}+20 x=15\)
33. \(2 c^{2}+c=6\)
34. \(3 d^{2}-4 d=15\)
35. \(2 x^{2}+7 x-15=0\)
36. \(3 x^{2}-14 x+8=0\)
37. \(2 p^{2}+7 p=14\)
38. \(3 q^{2}-5 q=9\)
39. \(5 x^{2}-3 x=-10\)
40. \(7 x^{2}+4 x=-3\)
- Contestar
-
29. \(m=-11, m=1\)
31. \(n=1 \pm \sqrt{14}\)
33. \(c=-2, c=\frac{3}{2}\)
35. \(x=-5, x=\frac{3}{2}\)
37. \(p=-\frac{7}{4} \pm \frac{\sqrt{161}}{4}\)
39. \(x=\frac{3}{10} \pm \frac{\sqrt{191}}{10} i\)
41. Resuelve la ecuación \(x^{2}+10 x=-25\)
- mediante el uso de la Propiedad Raíz Cuadrada
- Completando la Plaza
- ¿Qué método prefieres? ¿Por qué?
42. Resuelve la ecuación \(y^{2}+8y=48\) completando el cuadrado y explica todos tus pasos.
- Contestar
-
41. Las respuestas variarán
Autocomprobación
a. Después de completar los ejercicios, utilice esta lista de verificación para evaluar su dominio de los objetivos de esta sección.
b. Después de revisar esta lista de verificación, ¿qué hará para tener confianza en todos los objetivos?